Using Standing Gold Nanorod Arrays as Surface-Enhanced Raman Spectroscopy (SERS) Substrates for Detection of Carbaryl Residues in Fruit Juice and Milk

2017 ◽  
Vol 65 (3) ◽  
pp. 666-674 ◽  
Author(s):  
Fouad K. Alsammarraie ◽  
Mengshi Lin
The Analyst ◽  
2021 ◽  
Author(s):  
Najwan Albarghouthi ◽  
Presley MacMillan ◽  
Christa L. Brosseau

Modified gold nanorod arrays are used as SERS substrates for the detection of atrazine.


Coatings ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 198 ◽  
Author(s):  
Mehmet Yilmaz

The controlled deposition of nanoparticles onto 3-D nanostructured films is still facing challenges due to the uncontrolled aggregation of colloidal nanoparticles. In the context of this study, a simple yet effective approach is demonstrated to decorate the silver nanoparticles (AgNP) onto the 3-D and anisotropic gold nanorod arrays (GNAs) through a bioinspired polydopamine (PDOP) coating to fabricate surface-enhanced Raman spectroscopy (SERS) platforms. Since the Raman reporter molecules (methylene blue, MB, 10 µM) were not adsorbed directly on the surface of the plasmonic material, a remarkable decrease in SERS signals was detected for the PDOP-coated GNAs (GNA@PDOP) platforms. However, after uniform and well-controlled AgNP decoration on the GNA@PDOP (GNA@PDOP@AgNP), huge enhancement was observed in SERS signals from the resultant platform due to the synergistic action which originated from the interaction of GNAs and AgNPs. I also detected that PDOP deposition time (i.e., PDOP film thickness) is the dominant parameter that determines the SERS activity of the final system and 30 min of PDOP deposition time (i.e., 3 nm of PDOP thickness) is the optimum value to obtain the highest SERS signal. To test the reproducibility of GNA@PDOP@AgNP platforms, relative standard deviation (RSD) values for the characteristic peaks of MB were found to be less than 0.17, demonstrating the acceptable reproducibility all over the proposed platform. This report suggests that GNA@PDOP@AgNP system may be used as a robust platform for practical SERS applications.


The Analyst ◽  
2021 ◽  
Author(s):  
Araz Norouz Dizaji ◽  
Nihal Simsek Ozek ◽  
Ferhunde Aysin ◽  
Ayfer Calis ◽  
Asli Yilmaz ◽  
...  

This study reports the development of a highly sensitive antibiotic-based discrimination and sensor platform for the detection of gram-positive bacteria through surface-enhanced Raman spectroscopy (SERS). Herein, the combination of gold...


2006 ◽  
Vol 951 ◽  
Author(s):  
Motofumi Suzuki ◽  
Kaoru Nakajima ◽  
Kenji Kimura ◽  
Takao Fukuoka ◽  
Yasushige Mori

ABSTRACTWe have demonstrated surface-enhanced Raman spectroscopy on arrays of Au nanorods aligned in line by a dynamic oblique deposition technique. For the light polarized along the major axis of the nanorods, the plasma resonance of the Au nanorods has been tuned to a wavelength suitable for Raman spectroscopy. The Raman scattering on the discrete nanorods is enhanced significantly compared with that on semi continuous Au films. Since the preparation process is physically bottom-up, it is robust in its selection of the materials and is useful in providing the SERS sensors at low cost.


2007 ◽  
Vol 61 (9) ◽  
pp. 994-1000 ◽  
Author(s):  
Alyson V. Whitney ◽  
Francesca Casadio ◽  
Richard P. Van Duyne

Silver film over nanospheres (AgFONs) were successfully employed as surface-enhanced Raman spectroscopy (SERS) substrates to characterize several artists' red dyes including: alizarin, purpurin, carminic acid, cochineal, and lac dye. Spectra were collected on sample volumes (1 × 10−6 M or 15 ng/μL) similar to those that would be found in a museum setting and were found to be higher in resolution and consistency than those collected on silver island films (AgIFs). In fact, to the best of the authors' knowledge, this work presents the highest resolution spectrum of the artists' material cochineal to date. In order to determine an optimized SERS system for dye identification, experiments were conducted in which laser excitation wavelengths were matched with correlating AgFON localized surface plasmon resonance (LSPR) maxima. Enhancements of approximately two orders of magnitude were seen when resonance SERS conditions were met in comparison to non-resonance SERS conditions. Finally, because most samples collected in a museum contain multiple dyestuffs, AgFONs were employed to simultaneously identify individual dyes within several dye mixtures. These results indicate that AgFONs have great potential to be used to identify not only real artwork samples containing a single dye but also samples containing dyes mixtures.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Mustafa Culha ◽  
Brian Cullum ◽  
Nickolay Lavrik ◽  
Charles K. Klutse

While surface-enhanced Raman spectroscopy (SERS) has been attracting a continuously increasing interest of scientific community since its discovery, it has enjoyed a particularly rapid growth in the last decade. Most notable recent advances in SERS include novel technological approaches to SERS substrates and innovative applications of SERS in medicine and molecular biology. While a number of excellent reviews devoted to SERS appeared in the literature over the last two decades, we will focus this paper more specifically on several promising trends that have been highlighted less frequently. In particular, we will briefly overview strategies in designing and fabricating SERS substrates using deterministic patterning and then cover most recent biological applications of SERS.


2021 ◽  
Vol 31 (4) ◽  
Author(s):  
Quynh-Ngan Luong ◽  
Tran Cao Dao ◽  
Thi Thu Vu ◽  
Manh Cuong Nguyen ◽  
Nhu Duong Nguyen

Surface-enhanced Raman spectroscopy (SERS) is increasingly being used as a method for detecting traces of contaminants in a variety of specimens. In order to maximize SERS’s performance, the most important thing is to have highly active SERS substrates. In this report, we present a simple method for synthesizing silver nanodendrites (AgNDs) on the surface of a copper (Cu) plate using chemical deposition method. The results showed that, after fabrication, a large number of fern-like AgNDs formed on the Cu surface. These AgNDs are distributed evenly across the entire Cu surface with a relatively thick density. The prepared AgNDs were applied as SERS substrates for detecting Rhodamine 6G (R6G) in chili powders. The results showed that, using the prepared AgNDs substrates, as low as 10−10 M R6G in chili powders can be detected. This demonstrates the applicability of fabricated AgNDs as a highly active SERS substrate.


Sign in / Sign up

Export Citation Format

Share Document