Optimization of gold nanorod arrays for surface enhanced Raman spectroscopy (SERS) detection of atrazine

The Analyst ◽  
2021 ◽  
Author(s):  
Najwan Albarghouthi ◽  
Presley MacMillan ◽  
Christa L. Brosseau

Modified gold nanorod arrays are used as SERS substrates for the detection of atrazine.

Coatings ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 198 ◽  
Author(s):  
Mehmet Yilmaz

The controlled deposition of nanoparticles onto 3-D nanostructured films is still facing challenges due to the uncontrolled aggregation of colloidal nanoparticles. In the context of this study, a simple yet effective approach is demonstrated to decorate the silver nanoparticles (AgNP) onto the 3-D and anisotropic gold nanorod arrays (GNAs) through a bioinspired polydopamine (PDOP) coating to fabricate surface-enhanced Raman spectroscopy (SERS) platforms. Since the Raman reporter molecules (methylene blue, MB, 10 µM) were not adsorbed directly on the surface of the plasmonic material, a remarkable decrease in SERS signals was detected for the PDOP-coated GNAs (GNA@PDOP) platforms. However, after uniform and well-controlled AgNP decoration on the GNA@PDOP (GNA@PDOP@AgNP), huge enhancement was observed in SERS signals from the resultant platform due to the synergistic action which originated from the interaction of GNAs and AgNPs. I also detected that PDOP deposition time (i.e., PDOP film thickness) is the dominant parameter that determines the SERS activity of the final system and 30 min of PDOP deposition time (i.e., 3 nm of PDOP thickness) is the optimum value to obtain the highest SERS signal. To test the reproducibility of GNA@PDOP@AgNP platforms, relative standard deviation (RSD) values for the characteristic peaks of MB were found to be less than 0.17, demonstrating the acceptable reproducibility all over the proposed platform. This report suggests that GNA@PDOP@AgNP system may be used as a robust platform for practical SERS applications.


Nanomaterials ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 730 ◽  
Author(s):  
Min Jia ◽  
Shenmiao Li ◽  
Liguo Zang ◽  
Xiaonan Lu ◽  
Hongyan Zhang

Analyzing biomolecules is essential for disease diagnostics, food safety inspection, environmental monitoring and pharmaceutical development. Surface-enhanced Raman spectroscopy (SERS) is a powerful tool for detecting biomolecules due to its high sensitivity, rapidness and specificity in identifying molecular structures. This review focuses on the SERS analysis of biomolecules originated from humans, animals, plants and microorganisms, combined with nanomaterials as SERS substrates and nanotags. Recent advances in SERS detection of target molecules were summarized with different detection strategies including label-free and label-mediated types. This comprehensive and critical summary of SERS analysis of biomolecules might help researchers from different scientific backgrounds spark new ideas and proposals.


2021 ◽  
pp. 000370282110329
Author(s):  
Ling Wang ◽  
Mario O. Vendrell-Dones ◽  
Chiara Deriu ◽  
Sevde Doğruer ◽  
Peter de B. Harrington ◽  
...  

Recently there has been upsurge in reports that illicit seizures of cocaine and heroin have been adulterated with fentanyl. Surface-enhanced Raman spectroscopy (SERS) provides a useful alternative to current screening procedures that permits detection of trace levels of fentanyl in mixtures. Samples are solubilized and allowed to interact with aggregated colloidal nanostars to produce a rapid and sensitive assay. In this study, we present the quantitative determination of fentanyl in heroin and cocaine using SERS, using a point-and-shoot handheld Raman system. Our protocol is optimized to detect pure fentanyl down to 0.20 ± 0.06 ng/mL and can also distinguish pure cocaine and heroin at ng/mL levels. Multiplex analysis of mixtures is enabled by combining SERS detection with principal component analysis and super partial least squares regression discriminate analysis (SPLS-DA), which allow for the determination of fentanyl as low as 0.05% in simulated seized heroin and 0.10% in simulated seized cocaine samples.


The Analyst ◽  
2021 ◽  
Author(s):  
Araz Norouz Dizaji ◽  
Nihal Simsek Ozek ◽  
Ferhunde Aysin ◽  
Ayfer Calis ◽  
Asli Yilmaz ◽  
...  

This study reports the development of a highly sensitive antibiotic-based discrimination and sensor platform for the detection of gram-positive bacteria through surface-enhanced Raman spectroscopy (SERS). Herein, the combination of gold...


2006 ◽  
Vol 951 ◽  
Author(s):  
Motofumi Suzuki ◽  
Kaoru Nakajima ◽  
Kenji Kimura ◽  
Takao Fukuoka ◽  
Yasushige Mori

ABSTRACTWe have demonstrated surface-enhanced Raman spectroscopy on arrays of Au nanorods aligned in line by a dynamic oblique deposition technique. For the light polarized along the major axis of the nanorods, the plasma resonance of the Au nanorods has been tuned to a wavelength suitable for Raman spectroscopy. The Raman scattering on the discrete nanorods is enhanced significantly compared with that on semi continuous Au films. Since the preparation process is physically bottom-up, it is robust in its selection of the materials and is useful in providing the SERS sensors at low cost.


2007 ◽  
Vol 61 (9) ◽  
pp. 994-1000 ◽  
Author(s):  
Alyson V. Whitney ◽  
Francesca Casadio ◽  
Richard P. Van Duyne

Silver film over nanospheres (AgFONs) were successfully employed as surface-enhanced Raman spectroscopy (SERS) substrates to characterize several artists' red dyes including: alizarin, purpurin, carminic acid, cochineal, and lac dye. Spectra were collected on sample volumes (1 × 10−6 M or 15 ng/μL) similar to those that would be found in a museum setting and were found to be higher in resolution and consistency than those collected on silver island films (AgIFs). In fact, to the best of the authors' knowledge, this work presents the highest resolution spectrum of the artists' material cochineal to date. In order to determine an optimized SERS system for dye identification, experiments were conducted in which laser excitation wavelengths were matched with correlating AgFON localized surface plasmon resonance (LSPR) maxima. Enhancements of approximately two orders of magnitude were seen when resonance SERS conditions were met in comparison to non-resonance SERS conditions. Finally, because most samples collected in a museum contain multiple dyestuffs, AgFONs were employed to simultaneously identify individual dyes within several dye mixtures. These results indicate that AgFONs have great potential to be used to identify not only real artwork samples containing a single dye but also samples containing dyes mixtures.


Sign in / Sign up

Export Citation Format

Share Document