Experimenting with a Suzuki–Miyaura Cross-Coupling Reaction That Demonstrates Tolerance toward Aldehyde Groups To Teach Undergraduate Students the Fundamentals of Transition-Metal-Catalyzed Reactions

2019 ◽  
Vol 96 (11) ◽  
pp. 2672-2675 ◽  
Author(s):  
Jie Dai ◽  
Dadong Lu ◽  
Tao Ye ◽  
Shouyun Yu ◽  
Xu Cheng
Synthesis ◽  
2017 ◽  
Vol 49 (20) ◽  
pp. 4586-4598 ◽  
Author(s):  
Martyn Henry ◽  
Mohamed Mostafa ◽  
Andrew Sutherland

Amination and amidation of aryl compounds using a transition-metal-catalyzed cross-coupling reaction typically involves prefunctionalization or preoxidation of either partner. In recent years, a new class of transition-metal-catalyzed cross-dehydrogenative coupling reaction has been developed for the direct formation of aryl C–N bonds. This short review highlights the substantial progress made for ortho-C–N bond formation via transition-metal-catalyzed chelation-directed aryl C–H activation and gives an overview of the challenges that remain for directed meta- and para-selective reactions.1 Introduction2 Intramolecular C–N Cross-Dehydrogenative Coupling2.1 Nitrogen Functionality as Both Coupling Partner and Directing Group2.2 Chelating-Group-Directed Intramolecular C–N Bond Formation3 Intermolecular C–N Cross-Dehydrogenative Coupling3.1 ortho-C–N Bond Formation3.1.1 Copper-Catalyzed Reactions3.1.2 Other Transition-Metal-Catalyzed Reactions3.2 meta- and para-C–N Bond Formation4 C–N Cross-Dehydrogenative Coupling of Acidic C–H Bonds5 Conclusions


Synthesis ◽  
2022 ◽  
Author(s):  
Zhi-Shi Ye ◽  
Jin-cheng Li ◽  
Gang Wang

Optically active indole derivatives are ubiquitous in natural products and widely recognized as privileged components in pharmacologically relevant compounds. Therefore, developing catalytic asymmetric approaches for constructing indole derivatives is highly desirable. In this short review, transition-metal-catalyzed enantioselective synthesis of indoles from 2-alkynylanilines is summarized. 1 Introduction 2 Aminometalation triggered asymmetric cross-coupling reaction/insertion 2.1 Asymmetric Cross-Coupling Reaction 2.2 Asymmetric insertion of C=O, C=C and C≡N bonds 3 Asymmetric relay catalysis 4 Conclusion


2020 ◽  
Vol 24 (3) ◽  
pp. 231-264 ◽  
Author(s):  
Kevin H. Shaughnessy

Phosphines are widely used ligands in transition metal-catalyzed reactions. Arylphosphines, such as triphenylphosphine, were among the first phosphines to show broad utility in catalysis. Beginning in the late 1990s, sterically demanding and electronrich trialkylphosphines began to receive attention as supporting ligands. These ligands were found to be particularly effective at promoting oxidative addition in cross-coupling of aryl halides. With electron-rich, sterically demanding ligands, such as tri-tertbutylphosphine, coupling of aryl bromides could be achieved at room temperature. More importantly, the less reactive, but more broadly available, aryl chlorides became accessible substrates. Tri-tert-butylphosphine has become a privileged ligand that has found application in a wide range of late transition-metal catalyzed coupling reactions. This success has led to the use of numerous monodentate trialkylphosphines in cross-coupling reactions. This review will discuss the general properties and features of monodentate trialkylphosphines and their application in cross-coupling reactions of C–X and C–H bonds.


Synthesis ◽  
2019 ◽  
Vol 51 (09) ◽  
pp. 1913-1922 ◽  
Author(s):  
Sambasivarao Kotha ◽  
Milind Meshram ◽  
Nageswara Panguluri

We have summarized diverse synthetic approaches for the modification of peptides by employing transition-metal-catalyzed reactions. These methods can deliver unusual peptides suitable for peptidomimetics. To this end, several popular reactions such as Diels–Alder, 1,3-dipolar cycloaddition, [2+2+2] cyclotrimerization, metathesis, Suzuki­–Miyaura cross-coupling, and Negishi coupling have been used to assemble modified peptides by post-assembly chemical modification strategies.1 Introduction2 Synthesis of a Cyclic α-Amino Acid Derivative via a Ring-Closing Metathesis Protocol3 Peptide Modification Using a Ring-Closing Metathesis Strategy4 Peptide Modification via a [2+2+2] Cyclotrimerization Reaction5 Peptide Modification by Using [2+2+2] Cyclotrimerization and Suzuki Coupling6 Peptide Modification via a Suzuki–Miyaura Cross-Coupling7 Peptide Modification via Cross-Enyne Metathesis and a Diels–Alder­ Reaction as Key Steps8 Peptide Modification via 1,3-Dipolar Cycloaddition Reactions9 Modified Peptides via Negishi Coupling10 A Modified Dipeptide via Ethyl Isocyanoacetate11 Conclusions


Sign in / Sign up

Export Citation Format

Share Document