scholarly journals Transferability in Machine Learning for Electronic Structure via the Molecular Orbital Basis

2018 ◽  
Vol 14 (9) ◽  
pp. 4772-4779 ◽  
Author(s):  
Matthew Welborn ◽  
Lixue Cheng ◽  
Thomas F. Miller
2021 ◽  
Vol 154 (12) ◽  
pp. 124120
Author(s):  
Sebastian J. R. Lee ◽  
Tamara Husch ◽  
Feizhi Ding ◽  
Thomas F. Miller

1966 ◽  
Vol 19 (9) ◽  
pp. 1567 ◽  
Author(s):  
RD Brown ◽  
EK Nunn

A VESCF molecular-orbital study of the electronic structure of the triiodide anion in its crystalline environment in caesium triiodide and in tetraphenylarsonium triiodide reveals the effect of the lattices upon the electronic structures. The calculated total valence-electron energy as a function of the position of the central iodine nucleus provides an understanding of the observed geometries of the anion in the two crystals. The energy plot also implies that the asymmetric stretch of the triiodide is strongly anharmonic in the crystal. A satisfactory correlation exists between observed iodine : iodine bond lengths and computed bond orders.


2005 ◽  
Vol 33 (1) ◽  
pp. 20-21 ◽  
Author(s):  
M. Sundararajan ◽  
J.P. McNamara ◽  
M. Mohr ◽  
I.H. Hillier ◽  
H. Wang

We describe the use of the semi-empirical molecular orbital method PM3 (parametric method 3) to study the electronic structure of iron–sulphur proteins. We first develop appropriate parameters to describe models of the redox site of rubredoxins, followed by some preliminary calculations of multinuclear iron systems of relevance to hydrogenases.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 547
Author(s):  
Zengguang Tang ◽  
Liujiang Zhang ◽  
Zhenhuang Su ◽  
Zhen Wang ◽  
Li Chen ◽  
...  

In this article, CsPbI2Br perovskite thin films were spin-coated on FTO, on which CuPc was deposited by thermal evaporation. The electronic structure at the CsPbI2Br/CuPc interface was examined during the CuPc deposition by in situ X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) measurements. No downward band bending was resolved at the CsPbI2Br side, whereas there is ~0.23 eV upward band bending as well as a dipole of ~0.08 eV identified at the molecular side. Although the hole injection barrier as indicated by the energy gap from CsPbI2Br valance band maximum (VBM) to CuPc highest occupied molecular orbital (HOMO) was estimated to be ~0.26 eV, favoring hole extraction from CsPbI2Br to CuPc, the electron blocking barrier of ~0.04 eV as indicated by the offset between CsPbI2Br conduction band minimum (CBM) and CuPc lowest unoccupied molecular orbital (LUMO) is too small to efficiently block electron transfer. Therefore, the present experimental study implies that CuPc may not be a promising hole transport material for high-performance solar cells using CsPbI2Br as active layer.


2020 ◽  
Author(s):  
Dakota Folmsbee ◽  
Geoffrey Hutchison

We have performed a large-scale evaluation of current computational methods, including conventional small-molecule force fields, semiempirical, density functional, ab initio electronic structure methods, and current machine learning (ML) techniques to evaluate relative single-point energies. Using up to 10 local minima geometries across ~700 molecules, each optimized by B3LYP-D3BJ with single-point DLPNO-CCSD(T) triple-zeta energies, we consider over 6,500 single points to compare the correlation between different methods for both relative energies and ordered rankings of minima. We find promise from current ML methods and recommend methods at each tier of the accuracy-time tradeoff, particularly the recent GFN2 semiempirical method, the B97-3c density functional approximation, and RI-MP2 for accurate conformer energies. The ANI family of ML methods shows promise, particularly the ANI-1ccx variant trained in part on coupled-cluster energies. Multiple methods suggest continued improvements should be expected in both performance and accuracy.


Sign in / Sign up

Export Citation Format

Share Document