crystalline environment
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 8)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Michal Chamarczuk ◽  
Michal Malinowski ◽  
Deyan Draganov ◽  
Emilia Koivisto ◽  
Suvi Heinonen ◽  
...  

Abstract. For the first time, we apply a full-scale 3D seismic virtual-source survey (VSS) for the purpose of near-mine mineral exploration. The data was acquired directly above the Kylylahti underground mine in Finland. Recorded ambient noise (AN) data is characterized using power-spectral density (PSD) and beamforming. Data has most energy at frequencies 25–90 Hz and arrivals with velocities higher than 4 km/s have wide range of azimuths. Based on the PSD and beamforming results, we created 10-days subset of AN recordings that were dominated by multi-azimuth high-velocity arrivals. We use illumination-diagnosis technique and location procedure to show that the AN recordings associated with high apparent velocities are related to body-wave events. Next, we produce 994 virtual-source gathers by applying seismic-interferometry processing by cross-correlating AN at all receivers resulting in full 3D VSS. We apply standard 3D time-domain reflection seismic data processing and imaging using both a selectively stacked subset and full passive data, and validate the results against a pre-existing detailed geological information and 3D active-source survey data processed in the same way as the passive data. The resulting post-stack migrated sections show agreement of reflections between the passive and active data and indicate that VSS provide images where the active-source data are not available due to terrain restrictions. We conclude that while the all-noise approach provides some higher quality reflections related to the inner geological contacts within the target formation and the general dipping trend of the formation, the selected subset is most efficient in resolving the base of formation.


2021 ◽  
Vol 57 (6) ◽  
pp. 1235-1241
Author(s):  
T. N. Pluzhnikova ◽  
V. A. Fedorov ◽  
D. V. Balybin ◽  
A. D. Berezner ◽  
Yu. L. Mikhlin ◽  
...  

2020 ◽  
pp. 78-136
Author(s):  
Sandip Tiwari

This chapter provides the groundwork necessary to mathematically describe the crystalline solid that is to be the semiconductor used to explore the variety of interactions and cause and chance behaviors that physics builds insights into. The crystalline environment can be portrayed as a space-filling periodic arrangement consisting of a lattice with an atomic basis. The periodic arrangement leads to real space and reciprocal space descriptions with unit cells—the Wigner-Seitz cell and the Brillouin and Jones zones—where a variety of characteristics can be represented. Bloch’s theorem with its modulation function of the plane wave of a quantized wavevector, momentum versus crystal momentum, together with the consequences of symmetries and periodic perturbation in the appearance of bandgaps, is discussed for electron states. Phonons as particles for periodic oscillations of atoms, their modes and various branches, and consequences of ionicity leading to frequency-dependent permittivity are discussed.


2020 ◽  
Vol 6 (37) ◽  
pp. eabc0059
Author(s):  
Shichen Yuan ◽  
Klaus Schmidt-Rohr

A comprehensive 13C nuclear magnetic resonance (NMR) approach for characterizing the location of chain ends of polyethers and polyesters, at the crystallite surface or in the amorphous layers, is presented. The OH chain ends of polyoxymethylene are labeled with 13COO-acetyl groups and their dynamics probed by 13C NMR with chemical shift anisotropy (CSA) recoupling. At least three-quarters of the chain ends are not mobile dangling cilia but are immobilized, exhibiting a powder pattern characteristic of the crystalline environment and fast CSA dephasing. The location and clustering of the immobilized chain ends are analyzed by spin diffusion. Fast 1H spin diffusion from the amorphous regions shows confinement of chain ends to the crystallite surface, corroborated by fast 13C spin exchange between chain ends. These observations confirm the principle of avoidance of density anomalies, which requires that chains terminate at the crystallite surface to stay out of the crowded interfacial layer.


2020 ◽  
Author(s):  
BM Sala ◽  
T Le Marchand ◽  
G Pintacuda ◽  
C Camilloni ◽  
A Natalello ◽  
...  

AbstractA growing body of evidences has established that in many cases proteins may preserve most of their function and flexibility in a crystalline environment, and several techniques are today capable to detect transiently-populated states of macromolecules in tightly packed lattices. Intriguingly, in the case of amyloidogenic precursors, the presence of these conformations (hidden to conventional crystallographic studies) can be correlated to the pathological fate of the native fold.It remains unclear, however, to which extent these minor conformations reflect the protein behaviour that is more commonly studied in solution. Here, we address this question by investigating some biophysical properties of a prototypical amyloidogenic system, β2-microglobulin (β2m) in solution and in microcrystalline state.By combining NMR chemical shifts with Molecular Dynamics (MD) simulations, we confirmed that conformational dynamics of β2m native state in the crystal lattice is in keeping with what observed in solution.A comparative study of protein stability in solution and in crystallo is then carried out, monitoring the change in protein secondary structure at increasing temperature by Fourier transform infrared (FTIR) spectroscopy. The increased structural order of the crystalline state contributes to provide better resolved spectral components compared to those collected in solution and crucially, the crystalline samples display thermal stabilities in good agreement with the trend observed in solution.Overall, this work shows that protein stability and occurrence of pathological hidden states in crystals parallel their solution counterpart, confirming the interest of crystals as a platform for the biophysical characterisation of processes such as unfolding and aggregation.


2019 ◽  
Vol 75 (4) ◽  
pp. 412-421 ◽  
Author(s):  
Sima Sedghiniya ◽  
Janet Soleimannejad ◽  
Jan Janczak

At one extreme of the proton-transfer spectrum in cocrystals, proton transfer is absent, whilst at the opposite extreme, in salts, the proton-transfer process is complete. However, for acid–base pairs with a small ΔpK a (pK a of base − pK a of acid), prediction of the extent of proton transfer is not possible as there is a continuum between the salt and cocrystal ends. In this context, we attempt to illustrate that in these systems, in addition to ΔpK a, the crystalline environment could change the extent of proton transfer. To this end, two compounds of salicylic acid (SaH) and adenine (Ad) have been prepared. Despite the same small ΔpK a value (≈1.2), different ionization states are found. Both crystals, namely adeninium salicylate monohydrate, C5H6N5 +·C7H5O3 −·H2O, I, and adeninium salicylate–adenine–salicylic acid–water (1/2/1/2), C5H6N5 +·C7H5O3 −·2C5H5N5·C7H6O3·2H2O, II, have been characterized by single-crystal X-ray diffraction, IR spectroscopy and elemental analysis (C, H and N) techniques. In addition, the intermolecular hydrogen-bonding interactions of compounds I and II have been investigated and quantified in detail on the basis of Hirshfeld surface analysis and fingerprint plots. Throughout the study, we use crystal engineering, which is based on modifications of the intermolecular interactions, thus offering a more comprehensive screening of the salt–cocrystal continuum in comparison with pure pK a analysis.


2019 ◽  
Vol 7 (29) ◽  
pp. 8847-8854 ◽  
Author(s):  
Yoshio Yano ◽  
Toshikazu Ono ◽  
Sou Hatanaka ◽  
Daniel T. Gryko ◽  
Yoshio Hisaeda

A series of acid–base complexes reveal ΔpKa value and the crystalline environment determine the extent of proton transfer, which governs the intramolecular charge-transfer (ICT) strength of the complexes and tunes the photoluminescence properties.


Author(s):  
M. M. Glazov

This chapter is devoted to one of key phenomena in the field of spin physics, namely, resonant absorption of electromagnetic waves under conditions where the Zeeman splitting of spin levels in magnetic field is equal to photon energy. This method is particularly important for identification of nuclear spin effects, because resonance spectra provide fingerprints of different involved spin species and make it possible to distinguish different nuclear isotopes. As discussed in this chapter the nuclear magnetic resonance provides also an access to local magnetic fields acting on nuclear spins. These fields are caused by the magnetic interactions between the nuclei and by the quadrupole splittings of nuclear spin states in anisotropic crystalline environment. Manifestations of spin resonance in optical responses of semiconductors–that is, optically detected magnetic resonance–are discussed.


Author(s):  
Jennifer Hochscherf ◽  
Markus Pietsch ◽  
William Tieu ◽  
Kevin Kuan ◽  
Andrew D. Abell ◽  
...  

Glycosylated human leukocyte elastase (HLE) was crystallized and structurally analysed in complex with a 1,3-thiazolidine-2,4-dione derivative that had been identified as an HLE inhibitor in preliminary studies. In contrast to previously described HLE structures with small-molecule inhibitors, in this structure the inhibitor does not bind to the S1 and S2 substrate-recognition sites; rather, this is the first HLE structure with a synthetic inhibitor in which the S2′ site is blocked that normally binds the second side chain at the C-terminal side of the scissile peptide bond in a substrate protein. The inhibitor also induces the formation of crystalline HLE dimers that block access to the active sites and that are also predicted to be stable in solution. Neither such HLE dimers nor the corresponding crystal packing have been observed in previous HLE crystal structures. This novel crystalline environment contributes to the observation that comparatively large parts of the N-glycan chains of HLE are defined by electron density. The final HLE structure contains the largest structurally defined carbohydrate trees among currently available HLE structures.


Sign in / Sign up

Export Citation Format

Share Document