Concise Total Synthesis of (±)-Deguelin and (±)-Tephrosin Using a Vinyl Iodide as a Key Building Block

2018 ◽  
Vol 81 (4) ◽  
pp. 1055-1059 ◽  
Author(s):  
Shengtao Xu ◽  
Guangyu Wang ◽  
Feijie Xu ◽  
Wenlong Li ◽  
Aijun Lin ◽  
...  
2021 ◽  
Author(s):  
Venugopal Rao Challa ◽  
Daniel Kwon ◽  
Matthew Taron ◽  
Hope Fan ◽  
Baldip Kang ◽  
...  

A total synthesis of the marine macrolide biselide A is described that relies on an enantiomerically enriched α-chloroaldehyde as the sole chiral building block.


1984 ◽  
Vol 15 (36) ◽  
Author(s):  
H. AKITA ◽  
H. KOSHIJI ◽  
A. FURUICHI ◽  
K. HORIKOSHI ◽  
T. OISHI

2017 ◽  
Vol 13 ◽  
pp. 919-924 ◽  
Author(s):  
Yuta Isoda ◽  
Norihiko Sasaki ◽  
Kei Kitamura ◽  
Shuji Takahashi ◽  
Sujit Manmode ◽  
...  

The total synthesis of TMG-chitotriomycin using an automated electrochemical synthesizer for the assembly of carbohydrate building blocks is demonstrated. We have successfully prepared a precursor of TMG-chitotriomycin, which is a structurally-pure tetrasaccharide with typical protecting groups, through the methodology of automated electrochemical solution-phase synthesis developed by us. The synthesis of structurally well-defined TMG-chitotriomycin has been accomplished in 10-steps from a disaccharide building block.


Synthesis ◽  
2018 ◽  
Vol 50 (06) ◽  
pp. 1246-1258
Author(s):  
Udo Nubbemeyer ◽  
Adile Duymaz ◽  
Jochen Körber ◽  
Carolin Hofmann ◽  
Dorothea Gerlach

The synthesis of lipoxin A4 and B4 analogues (LXA4, LXB4) to gain access to stabilized inflammation resolving compounds is an important field of research. Starting from known structural requirements of the natural compounds displaying biological activity and a broad investigation of their rapid metabolism, various LXA4 derivatives have been developed and tested. Focusing on variation and stabilization of the conjugated E,E,Z,E C7–C14 tetraene moiety of natural LXA4, a methylene bridge introduced between C9 and C14 might suppress any Z/E isomerization of the C11–C12 olefin. Intending to enable at least known structure variations in connection with the C1–C7 and the C15–C20 fragments, a convergent total synthesis starting from a known cycloheptatriene is developed. The C1–C8 building blocks are generated via six-step ex-chiral pool sequences starting from 2-deoxy-d-ribose delivering two 5,6-dihydroxy carboxylic acid derivatives with C7 aldehyde functions. The synthesis of the C8–C21 building block starts from a known cycloheptatriene 1-carbonester (C8–C14, C21) and hexanoyl chloride (C15–C20). After Friedel–Crafts-type coupling, the defined configuration of the C15 OH group is introduced via enantioselective reduction of the ketone precursor. Following an additional four steps, an aryl sulfone C9–C21 building block is completed ready for a key Julia–Kocienski olefination with the C1–C7 compounds. Finally, removal of the protecting groups completes the synthesis of the target optically active 9,14-methylene LXA4 methyl ester.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5939
Author(s):  
Evanthia Papadaki ◽  
Dimitris Georgiadis ◽  
Michail Tsakos

The chiral N1-Cbz, N2-H derivative of the piperazic acid monomer is a valuable building block in the total synthesis of natural products, comprising this nonproteinogenic amino acid. In that context, we wish to report an improved synthetic protocol for the synthesis of both (3R)- and (3S)-piperazic acids bearing the carboxybenzyl protecting group (Cbz) selectively at the N1 position. Our method builds on previously reported protocols, circumventing their potential shortcomings, and optimizing the ultimate selective deprotection at the N2 position, thus, offering an efficient and reproducible pathway to suitably modified piperazates in high optical purity.


Sign in / Sign up

Export Citation Format

Share Document