Accurate High-Level Ab Initio-Based Global Potential Energy Surface and Quantum Dynamics Calculation for the First Excited State of CH2+

Author(s):  
Hongyu Ma ◽  
Chengyuan Zhang ◽  
Yuzhi Song ◽  
Fengcai Ma ◽  
Yongqing Li
2021 ◽  
Vol 23 (10) ◽  
pp. 6141-6153
Author(s):  
Jianwei Cao ◽  
Yanan Wu ◽  
Haitao Ma ◽  
Zhitao Shen ◽  
Wensheng Bian

Quantum dynamics and ring polymer molecular dynamics calculations reveal interesting dynamical and kinetic behaviors of an endothermic complex-forming reaction.


2018 ◽  
Vol 20 (45) ◽  
pp. 28425-28434 ◽  
Author(s):  
Benhui Yang ◽  
P. Zhang ◽  
C. Qu ◽  
P. C. Stancil ◽  
J. M. Bowman ◽  
...  

A six-dimensional potential energy surface for the CS–H2 system was computed using high-level ab initio theory and fitted using a hybrid invariant polynomial method. Quantum close-coupling scattering calculations have been carried out for rovibrational quenching transitions of CS induced by H2.


2020 ◽  
Vol 22 (5) ◽  
pp. 2792-2802
Author(s):  
Gustavo Avila ◽  
Dóra Papp ◽  
Gábor Czakó ◽  
Edit Mátyus

A full-dimensional ab initio potential energy surface is developed and utilized in full-dimensional variational vibrational computations for the CH4·Ar van-der-Waals complex.


Sign in / Sign up

Export Citation Format

Share Document