How Parallel Are Excited State Potential Energy Surfaces from Time-Independent and Time-Dependent DFT? A BODIPY Dye Case Study

2016 ◽  
Vol 120 (41) ◽  
pp. 8160-8168 ◽  
Author(s):  
Keenan T. Komoto ◽  
Tim Kowalczyk
2019 ◽  
Author(s):  
Ishita Bhattacharjee ◽  
Debashree Ghosh ◽  
Ankan Paul

The question of quadruple bonding in C<sub>2</sub> has emerged as a hot button issue, with opinions sharply divided between the practitioners of Valence Bond (VB) and Molecular Orbital (MO) theory. Here, we have systematically studied the Potential Energy Curves (PECs) of low lying high spin sigma states of C<sub>2</sub>, N<sub>2</sub> and Be<sub>2</sub> and HC≡CH using several MO based techniques such as CASSCF, RASSCF and MRCI. The analyses of the PECs for the<sup> 2S+1</sup>Σ<sub>g/u</sub> (with 2S+1=1,3,5,7,9) states of C<sub>2</sub> and comparisons with those of relevant dimers and the respective wavefunctions were conducted. We contend that unlike in the case of N<sub>2</sub> and HC≡CH, the presence of a deep minimum in the <sup>7</sup>Σ state of C<sub>2</sub> and CN<sup>+</sup> suggest a latent quadruple bonding nature in these two dimers. Hence, we have struck a reconciliatory note between the MO and VB approaches. The evidence provided by us can be experimentally verified, thus providing the window so that the narrative can move beyond theoretical conjectures.


2018 ◽  
Vol 14 (11) ◽  
pp. 5859-5869 ◽  
Author(s):  
Attila Tajti ◽  
John F. Stanton ◽  
Devin A. Matthews ◽  
Péter G. Szalay

2019 ◽  
Vol 21 (39) ◽  
pp. 21761-21775 ◽  
Author(s):  
Diptarka Hait ◽  
Adam Rettig ◽  
Martin Head-Gordon

HF/DFT orbitals spin-polarize when single bonds are stretched past the Coulson–Fischer point. We report unphysical features in the excited state potential energy surfaces predicted by CIS/TDDFT in this regime, and characterize their origin.


2007 ◽  
Vol 126 (13) ◽  
pp. 134315 ◽  
Author(s):  
Juan Carlos Castro-Palacios ◽  
Jesús Rubayo-Soneira ◽  
Keisaku Ishii ◽  
Koichi Yamashita

Sign in / Sign up

Export Citation Format

Share Document