scholarly journals Highly Accurate CCSDT(Q)/CBS Reaction Barrier Heights for a Diverse Set of Transition Structures: Basis Set Convergence and Cost-Effective Approaches for Estimating Post-CCSD(T) Contributions

2019 ◽  
Vol 123 (31) ◽  
pp. 6720-6732 ◽  
Author(s):  
Amir Karton
2020 ◽  
Author(s):  
Oscar Ventura

A simple version of a composite scheme is described, based on a combination of density functional geometry and frequencies evaluation, valence energies obtained using the CCSD(T)-f12 method extrapolated to the complete basis set limit, and core-valence correlation corrections employing the MP2 method. The procedure was applied to the 38 reactions in Truhlar’s HTBH38/08 and NHTBH38/08 databases. Mean unsigned deviation (MUD) for the complete set of 68 independent barriers is 0.43 kcal mol-1, compared to 1.37 kcal/mol for G4 and 1.69 kcal/mol for the dispersioncorrected M06-2X method. Its accuracy is also better that that of other calculations using composite methods of similar cost. The MUD of the new scheme on the barriers in the DBH24/08 subset (12 out of the 38 reactions in both other sets) is 0.31 kcal mol-1, better than that obtained at the expensive CCSD(T,full)/aug-cc-pCV(T+d)Z level (0.46 kcal mol-1) and comparable to the most exact (and costly) Wn calculations (MUD=0.14 kcal mol-1). The maximum unsigned deviation (MaxUD) of the new method for all the reactions studied is 1.71 kcal/mol. G4 and M06-2X, on the other side, exhibit MaxUDs of 6.7 and 8.4 kcal/mol respectively


2020 ◽  
Author(s):  
Oscar Ventura

A simple version of a composite scheme is described, based on a combination of density functional geometry and frequencies evaluation, valence energies obtained using the CCSD(T)-f12 method extrapolated to the complete basis set limit, and core-valence correlation corrections employing the MP2 method. The procedure was applied to the 38 reactions in Truhlar’s HTBH38/08 and NHTBH38/08 databases. Mean unsigned deviation (MUD) for the complete set of 68 independent barriers is 0.43 kcal mol-1, compared to 1.37 kcal/mol for G4 and 1.69 kcal/mol for the dispersioncorrected M06-2X method. Its accuracy is also better that that of other calculations using composite methods of similar cost. The MUD of the new scheme on the barriers in the DBH24/08 subset (12 out of the 38 reactions in both other sets) is 0.31 kcal mol-1, better than that obtained at the expensive CCSD(T,full)/aug-cc-pCV(T+d)Z level (0.46 kcal mol-1) and comparable to the most exact (and costly) Wn calculations (MUD=0.14 kcal mol-1). The maximum unsigned deviation (MaxUD) of the new method for all the reactions studied is 1.71 kcal/mol. G4 and M06-2X, on the other side, exhibit MaxUDs of 6.7 and 8.4 kcal/mol respectively


2021 ◽  
Author(s):  
Oscar Ventura ◽  
Martina Kieninger ◽  
Aline Katz ◽  
Mauricio Vega-Teijido ◽  
Marc E. Segovia ◽  
...  

A simple composite scheme is presented, based on a combination of density functional geometry and frequencies evaluation, valence energies obtained using the CCSD(T)-f12 method extrapolated to the complete basis set limit, and core-valence correlation corrections employing the MP2 method. The procedure was applied to the 38 reactions in Truhlar’s HTBH38/08 and NHTBH38/08 databases and the errors in the barriers with respect to their best values are presented. Mean unsigned deviation (MUD) for the complete set of 68 independent barriers is 0.40 kcal mol-1 , compared to 1.31 kcal/mol for G4 and 1.62 kcal/mol for the dispersion-corrected M06- 2X method. The accuracy of the procedure is also better that that of other calculations using composite methods of similar cost. The MUD of the new scheme on the barriers in the DBH24/08 subset (12 out of the 38 reactions in the other two sets) is 0.27 kcal mol-1 , better than that obtained at the expensive CCSD(T,full)/aug-cc-pCV(T+d)Z level (0.46 kcal mol-1 ) and comparable to the 2 most exact (and costly) Wn calculations (MUD=0.14 kcal mol-1 ). The maximum unsigned deviation (MaxUD) for all the reactions studied is 0.99 kcal/mol. G4 and M06-2X, on the other side, exhibit MaxUDs of 6.7 and 8.0 kcal/mol respectively. The method was further tested against a subset of the reactions in the databases, for which the geometry and energies of all species were determined at the much more demanding CCSD(T)-F12//pVQZ-F12 level. These results showed that Truhlar’s calculations in this subset are off the best values by a considerable amount, with an rmse of 0.56 kcal/mol. As a consequence, a new dataset of barrier heights, SV20, is presented. The SVECV-F12 procedure on this SV20 database results in rmse and MUD values of only 0.21 and 0.16 kcal/mol. The possible residual errors introduced by the approximations used for each component of the method are tested against more sophisticated calculations and shown to be accurate enough to obtain barriers well under the chemical precision limit at a reasonable cost for molecules of interest in atmospheric chemistry.


2019 ◽  
Author(s):  
Mark Iron ◽  
Trevor Janes

A new database of transition metal reaction barrier heights – MOBH35 – is presented. Benchmark energies (forward and reverse barriers and reaction energy) are calculated using DLPNO-CCSD(T) extrapolated to the complete basis set limit using a Weizmann1-like scheme. Using these benchmark energies, the performance of a wide selection of density functional theory (DFT) exchange–correlation functionals, including the latest from the Truhlar and Head-Gordon groups, is evaluated. It was found, using the def2-TZVPP basis set, that the ωB97M-V (MAD 1.8 kcal/mol), ωB97X-V (MAD 2.1 kcal/mol) and SCAN0 (MAD 2.1 kcal/mol) hybrid functionals are recommended. The double-hybrid functionals PWPB95 (MAD 1.6 kcal/mol) and B2K-PLYP (MAD 1.8 kcal/mol) did perform slightly better but this has to be balanced by their increased computational cost.


1994 ◽  
Vol 100 (9) ◽  
pp. 6620-6627 ◽  
Author(s):  
Keld L. Bak ◽  
Poul Jo/rgensen ◽  
Trygve Helgaker ◽  
Kenneth Ruud ◽  
Hans Jo/rgen Aa. Jensen

Sign in / Sign up

Export Citation Format

Share Document