scholarly journals Basis set convergence of CCSD(T) equilibrium geometries using a large and diverse set of molecular structures

2016 ◽  
Vol 145 (10) ◽  
pp. 104101 ◽  
Author(s):  
Peter R. Spackman ◽  
Dylan Jayatilaka ◽  
Amir Karton
2003 ◽  
Vol 68 (3) ◽  
pp. 489-508 ◽  
Author(s):  
Yinghong Sheng ◽  
Jerzy Leszczynski

The equilibrium geometries, harmonic vibrational frenquencies, and the dissociation energies of the OCH+-Rg (Rg = He, Ne, Ar, Kr, and Xe) complexes were calculated at the DFT, MP2, MP4, CCSD, and CCSD(T) levels of theory. In the lighter OCH+-Rg (Rg = He, Ne, Ar) rare gas complexes, the DFT and MP4 methods tend to produce longer Rg-H+ distance than the CCSD(T) level value, and the CCSD-calculated Rg-H+ bond lengths are slightly shorter. DFT method is not reliable to study weak interaction in the OCH+-He and OCH+-Ne complexes. A qualitative result can be obtained for OCH+-Ar complex by using the DFT method; however, a higher-level method using a larger basis set is required for the quantitative predictions. For heavier atom (Kr, Xe)-containing complexes, only the CCSD method predicted longer Rg-H+ distance than that obtained at the CCSD(T) level. The DFT method can be applied to obtain the semiquantitative results. The relativistic effects are expected to have minor effect on the geometrical parameters, the H+-C stretching mode, and the dissociation energy. However, the dissociation energies are sensitive to the quality of the basis set. The nature of interaction between the OCH+ ion and Rg atoms was also analyzed in terms of the interaction energy components.


1984 ◽  
Vol 39 (8) ◽  
pp. 1053-1057 ◽  
Author(s):  
loan Motoc ◽  
Oskar E. Polansky

AbstractMinimal STO-NG (N = 3, 4 and 6 ) basis set non-empirical HF SCF MO calculations have been performed for topologically related 1,4-dibora-2,3-diazarine (S) and 1,4-dibora-2,5-diazarine (T). The equilibrium geometries of these S and T isomers have been computed by symmetry-constraint geometry optimizations using the STO-3G basis set. The calculations lead to the prediction that: i) the T isomer is about 48 kJ/mole less stable than the S isomer, and ii) the π -MO energy patterns of the S and T isomers are in complete agreement with the TEMO theorem, while the bonding σ-MO eigenvalues exhibit four inversion points.


2011 ◽  
Vol 66 (1) ◽  
pp. 69-76 ◽  
Author(s):  
Wolfgang Förner ◽  
Hassan M. Badawi

We have performed density functional calculations with the B3LYP functional and a 6-311G** basis set to obtain the vibrational spectra in harmonic approximation of the anti-leprosy drug Dapsone and the parent compound diphenylsulfone. Although the chemical difference between the two molecules is not that pronounced (Dapsone has amino groups in the para positions in the phenyl rings), Dapsone is an active drug, while to our knowledge diphenylsulfone shows no medical activity. We compared the theoretical results to experimental vibrational spectra found in the literature. With the help of the program GAUSSVIEW we were able to assign the experimentally found spectral lines to specific atomic motions. The remarkable difference between the two molecules, regarding their structural behavior, is that the drug Dapsone has a more flexible structure of the phenyl ring than the parent molecule has. This might contribute to a greater ability of the drug to fit into receptor sites in a cell membrane although one has to be well aware that this plays most propably only a minor role in the drug activity of Dapsone


1994 ◽  
Vol 100 (9) ◽  
pp. 6620-6627 ◽  
Author(s):  
Keld L. Bak ◽  
Poul Jo/rgensen ◽  
Trygve Helgaker ◽  
Kenneth Ruud ◽  
Hans Jo/rgen Aa. Jensen

1975 ◽  
Vol 53 (24) ◽  
pp. 3747-3756 ◽  
Author(s):  
Roy E. Kari ◽  
Imre G.A Csizmadia

Equilibrium geometries and energies are obtained for SHn (n = 0, 1, 2, 3) neutral and charged species by the Roothaan LCAO–MO–SCF method. A large gaussian basis set including d and p polarization functions was employed. The calculated ionization potentials, electron, proton, hydrogen, and hydride affinities are discussed as well as compared with similar previously calculated properties for OHn (n = 0, 1, 2, 3) species.


2014 ◽  
Vol 13 (04) ◽  
pp. 1450030 ◽  
Author(s):  
Aifang Gao ◽  
Aiguo Li

The molecular structures and electron affinities of the R – S / R – S -( R = CH 3, C 2 H 5, n- C 3 H 7, n- C 4 H 9, n- C 5 H 11, i- C 3 H 7, i- C 4 H 9, t- C 4 H 9) species have been studied using 17 pure and hybrid density functionals (five generalized gradient approximation (GGA) methods, six hybrid GGAs, one meta GGA method and five hybrid meta GGAs). The basis set used in this work is of double-ζ plus polarization quality with additional diffuse s- and p-type functions, denoted by DZP++. The geometries are fully optimized with each DFT method and discussed. Harmonic vibrational frequencies are found to be within 3.5% of available experimental values for most functionals. Three different types of the neutral-anion energy separations have been presented. The theoretical electron affinities of alkylthio radicals are in good agreement with the experiment data. The M06 method is very good for the adiabatic electron affinity calculations, and the average absolute error is 0.0439 eV. The HCTH method performs better for EA prediction. The M06-HF, mPWPW91, VSXC and B98 are also reasonable. The most reliable adiabatic electron affinities are predicted to be 1.864 eV ( CH 3 S ), 1.946 eV ( C 2 H 5 S ), 1.959 eV (n- C 3 H 7 S ), 1.970 eV (n- C 4 H 9 S ), 1.982 eV (n- C 5 H 11 S ), 2.053 eV (i- C 3 H 7 S ), 1.991 eV (i- C 4 H 9 S ) and 2.100 eV (t- C 4 H 9 S ) at the M06/DZP++ level of theory, respectively.


1992 ◽  
Vol 70 (2) ◽  
pp. 348-352 ◽  
Author(s):  
Leif J. Saethre ◽  
Odd Gropen

The molecular structures of square-planar X42+, X4+, and X4 (X = S, Se, Te) have been calculated using the effective core potential model. For X42+ the agreement between experimental and calculated values is excellent provided that d orbitals are included in the basis set. For the hypothetical molecules X4+ and X4 the bond lengths are found to increase dramatically as one and, subsequently, two electrons are added to the systems. Extensive population analysis shows that this increase is almost exclusively due to loss of bonding in the π system, whereas the bonding in the σ system remains relatively unaltered. These results make it possible to predict covalent single bond radii for S, Se, and Te for which the influence of π repulsion is removed. From the calculated variation of bond lengths with atomic charge, bond lengths are predicted for a series of planar disulphide rings. Keywords: structure, bonding, chalcogen, theoretical, ECP.


Sign in / Sign up

Export Citation Format

Share Document