rotational barrier
Recently Published Documents


TOTAL DOCUMENTS

294
(FIVE YEARS 13)

H-INDEX

27
(FIVE YEARS 1)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Jia-Lei Yan ◽  
Rakesh Maiti ◽  
Shi-Chao Ren ◽  
Weiyi Tian ◽  
Tingting Li ◽  
...  

AbstractAxially chiral styrenes bearing a chiral axis between a sterically non-congested acyclic alkene and an aryl ring are difficult to prepare due to low rotational barrier of the axis. Disclosed here is an N-heterocyclic carbene (NHC) catalytic asymmetric solution to this problem. Our reaction involves ynals, sulfinic acids, and phenols as the substrates with an NHC as the catalyst. Key steps involve selective 1,4-addition of sulfinic anion to acetylenic acylazolium intermediate and sequential E-selective protonation to set up the chiral axis. Our reaction affords axially chiral styrenes bearing a chiral axis as the product with up to > 99:1 e.r., > 20:1 E/Z selectivity, and excellent yields. The sulfone and carboxylic ester moieties in our styrene products are common moieties in bioactive molecules and asymmetric catalysis.


2021 ◽  
Author(s):  
Jia-Lei Yan ◽  
Rakesh Maiti ◽  
Shi-Chao Ren ◽  
Weiyi Tian ◽  
Tingting Li ◽  
...  

Abstract Axially chiral styrenes bearing a chiral axis between a sterically non-congested acyclic alkene and an aryl ring are difficult to prepare due to low rotational barrier of the axis. Disclosed here is an N-heterocyclic carbene (NHC) catalytic asymmetric solution to this problem. Our reaction involves ynals, sulfinic acids, and phenols as the substrates with an NHC as the catalyst. Key steps involve selective 1,4-addition of sulfinic anion to acetylenic acylazolium intermediate and sequential E-selective protonation to set up the chiral axis. Our reaction affords axially chiral styrenes bearing a chiral axis as the product with up to >99:1 e.r., >20:1 E/Z selectivity, and excellent yields. The sulfone and carboxylic ester moieties in our styrene products are common moieties in bioactive molecules and asymmetric catalysis.


2021 ◽  
Author(s):  
Dong Hao ◽  
Xiangqian Tang ◽  
Wenyu Wang ◽  
Yang An ◽  
Yueyi Wang ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Yue Liang ◽  
Ziqiu Chen ◽  
Brant Billinghurst ◽  
Jianbao Zhao ◽  
Jiarui Ma ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2137
Author(s):  
Vyacheslav S. Grinev ◽  
Oksana A. Mayorova ◽  
Tatyana V. Anis’kova ◽  
Alexandra S. Tikhomolova ◽  
Alevtina Yu. Yegorova

3-(2-Chlorobenzylidene)-5-(p-tolyl)furan-2(3H)-one (1), C18H13ClO2, crystallizes with Z = 8 and Z′ = 2, and the structure at 100 K has orthorhombic (Pna21) symmetry. Each kind of molecule takes part in π–π stacking interactions to form infinite chains parallel to the c axis. We believe that the existence of two forms can be explained by the probable rotation around a single C–C bond. The quantum chemical modeling reveals that these molecules are almost equivalent energetically, and they can be described as the two most stable conformers (rotamers) with a minor rotational barrier of about 0.67 kcal/mol.


2021 ◽  
Vol 03 (02) ◽  
pp. 337-345
Author(s):  
Sinu C. Rajappan ◽  
Olav Vestrheim ◽  
Mona Sharafi ◽  
Jianing Li ◽  
Severin T. Schneebeli

We synthesized some of the longest unimolecular oligo(p-phenylene ethynylenes) (OPEs), which are fully substituted with electron-withdrawing ester groups. An iterative convergent/divergent (a.k.a. iterative exponential growth – IEG) strategy based on Sonogashira couplings was utilized to access these sequence-defined macromolecules with up to 16 repeating units and 32 ester substituents. The carbonyl groups of the ester substituents interact with the triple bonds of the OPEs, leading to (i) unusual, angled triple bonds with increased rotational barrier, (ii) enhanced conformational disorder, and (iii) associated broadening of the UV/Vis absorption spectrum. Our results demonstrate that fully air-stable, unimolecular OPEs with ester groups can readily be accessed with IEG chemistry, providing new macromolecular backbones with unique geometrical, conformational, and photophysical properties.


2021 ◽  
Vol 23 (14) ◽  
pp. 8549-8556
Author(s):  
Yue Liang ◽  
Yichi Zhang ◽  
Csaba Fábri ◽  
Jiarui Ma ◽  
Jianbao Zhao ◽  
...  

The assignment of the fundamental and the first two hot bands of the –CHO torsional mode in benzaldehyde.


2020 ◽  
Vol 10 (4) ◽  
pp. 319-334
Author(s):  
Ali Hussain Yateem

The rotational barrier RB around C–NH2 bond between the minimum and maximum states of 84 electron-withdrawing groups at para-position in aniline were studied at the density functional wB97X-D/6-31G** level. The rotational barrier was found to correlate strongly with shortening of the C–NH2 bond, increase of flattening of NH2 group, decrease in negative natural charge on amino nitrogen, increase in minimum ionization potential around lone pair of amino nitrogen, increase in maximum (positive) electrostatic potential on amino hydrogens, increase in NH2 stretching frequencies, and increase in stabilization energy. The rotational barrier was also found to correlate well with empirical pKa and Hammett σp constants. The rotational barrier is shown to be a reliable quantum mechanical approach to measure p-conjugation in para-substituted anilines.  Based on RB a quantitative scale is constructed for the ability of electron-withdrawing substituents to resonate with aniline. A quinone-like structure has been proposed for stronger electron-withdrawing substituents where an extension of resonance stabilization requires the simultaneous presence of electron donor (NH2) and electron-withdrawing groups.


2020 ◽  
Vol 7 (2) ◽  
pp. 024901
Author(s):  
Taylor D. Krueger ◽  
Sean A. Boulanger ◽  
Liangdong Zhu ◽  
Longteng Tang ◽  
Chong Fang

Sign in / Sign up

Export Citation Format

Share Document