scholarly journals Structural, Photophysical, and Photochemical Characterization of Zinc Protoporphyrin IX in a Dimeric Variant of an Iron Storage Protein: Insights into the Mechanism of Photosensitized H2 Generation

2019 ◽  
Vol 123 (31) ◽  
pp. 6740-6749 ◽  
Author(s):  
Brenda S. Benavides ◽  
Rajendra Acharya ◽  
Emily R. Clark ◽  
Priyanka Basak ◽  
Michael J. Maroney ◽  
...  
RSC Advances ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 5551-5559
Author(s):  
Brenda S. Benavides ◽  
Silvano Valandro ◽  
Donald M. Kurtz

An assembly of platinum nanoparticles produced by Fe(ii) reduction of Pt(ii) and stabilized by human heavy chain ferritin's native catalysis of Fe(ii)(aq) autoxidation functions as an efficient photosensitized H2 evolution catalyst.


2005 ◽  
Vol 388 (3) ◽  
pp. 731-740 ◽  
Author(s):  
Nodar SURGULADZE ◽  
Stephanie PATTON ◽  
Anna COZZI ◽  
Michael G. FRIED ◽  
James R. CONNOR

Ferritin, normally considered a cytoplasmic iron-storage protein, is also found in cell nuclei. It is an established fact that H-ferritin is the major form of nuclear ferritin, but little is known about the roles of ferritin in nuclei or about the mechanisms that control its appearance within the nuclear volume. In the present study, we show that, for human SW1088 astrocytoma cells, the nuclear and cytoplasmic forms of H-ferritin are products of the same mRNA. Histochemical and biochemical evidence is presented showing that ferritin is distributed non-randomly within the nuclear volume and that it preferentially associates with heterochromatin. Both cytoplasmic and nuclear populations of H-ferritin contain mixtures of non- and O-glycosylated forms, but the nuclear population is enriched in O-glycosylated forms. Cells treated with alloxan, a potent inhibitor of O-glycosylation, contained significantly less nuclear ferritin compared with cells grown in control media. Alloxan inhibited the reappearance of H-ferritin in nuclei of cells released from conditions of iron depletion, but did not prevent its disappearance from nuclei of cells undergoing iron depletion. These results suggest that O-glycosylation accompanies the transfer of ferritin from the cytoplasm to the nucleus, but does not influence the reverse process. The picture that emerges is one in which ferritin translocation between the cytoplasm and the nucleus is post-translationally regulated and responds to environmental and nutritional cues.


1998 ◽  
Vol 75 (4) ◽  
pp. 437 ◽  
Author(s):  
Maureen J. Donlin ◽  
Regina F. Frey ◽  
Christopher Putnam ◽  
Jody Proctor ◽  
James K. Bashkin

1995 ◽  
Vol 305 (1) ◽  
pp. 21-23 ◽  
Author(s):  
A Treffry ◽  
D Gelvan ◽  
A M Konijn ◽  
P M Harrison

Ferritin is an iron-storage protein ubiquitous in mammals, plants and bacteria. It can be reconstituted, in vitro, from the apoprotein and Fe(II) salts in the presence of dissolved oxygen. Recently it has been reported that caeruloplasmin can facilitate apoferritin reconstitution and that iron oxidized by caeruloplasmin is sequestered within the ferritin shell. Here we show that the primary effect of adding caeruloplasmin to horse spleen ferritin during reconstitution is the competition between the two molecules for the iron. This competition results in overall increased rates of iron oxidation and a mixture of products, namely iron-containing ferritin and iron hydroxy polymers attached to caeruloplasmin. Iron oxidized by caeruloplasmin is not incorporated, to any significant extent, into horse spleen ferritin.


1986 ◽  
Vol 27 (4) ◽  
pp. 287-293 ◽  
Author(s):  
Pauline M. Harrison ◽  
Amyra Treffry ◽  
Terence H. Lilley

Epilepsia ◽  
2005 ◽  
Vol 46 (9) ◽  
pp. 1371-1379 ◽  
Author(s):  
Jan A. Gorter ◽  
Ana R.M. Mesquita ◽  
Erwin A. van Vliet ◽  
Fernando H. Lopes da Silva ◽  
Eleonora Aronica

2005 ◽  
Vol 164 (2) ◽  
pp. 230-233 ◽  
Author(s):  
Michael J. Atkinson ◽  
Marianne T. Spanner ◽  
Michael Rosemann ◽  
Utz Linzner ◽  
Walter A. Müller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document