scholarly journals Metal Exchange Boosts the CO2 Selectivity of Metal Organic Frameworks Having Zn-Oxide Nodes

Author(s):  
Gokay Avci ◽  
Cigdem Altintas ◽  
Seda Keskin
2017 ◽  
Vol 17 (4) ◽  
pp. 2059-2065 ◽  
Author(s):  
Jiao Liu ◽  
Guo-Ping Yang ◽  
Yunlong Wu ◽  
Yuwei Deng ◽  
Qingshan Tan ◽  
...  

2015 ◽  
Vol 51 (53) ◽  
pp. 10765-10765 ◽  
Author(s):  
Dengrong Sun ◽  
Wenjun Liu ◽  
Mei Qiu ◽  
Yongfan Zhang ◽  
Zhaohui Li

Correction for ‘Introduction of a mediator for enhancing photocatalytic performance via post-synthetic metal exchange in metal–organic frameworks (MOFs)’ by Dengrong Sun et al., Chem. Commun., 2015, 51, 2056–2059.


2021 ◽  
Vol 11 (24) ◽  
pp. 11687
Author(s):  
Abdul Malik P. Peedikakkal ◽  
Isam H. Aljundi

In metal-organic frameworks (MOFs), mixed-metal clusters have the opportunity to adsorb hydrogen molecules due to a greater charge density of the metal. Such interactions may subsequently enhance the gravimetric uptake of hydrogen. However, only a few papers have explored the ability of mixed-metal MOFs to increase hydrogen uptake. The present work reveals the preparation of mixed metal metal-organic frameworks M-MOF-5 (where M = Ni2+, Co2+, and Fe2+) (where MOF-5 designates MOFs such as Zn2+ and 1,4-benzenedicarboxylic acid ligand) using the post-synthetic exchange (PSE) technique. Powder X-ray diffraction patterns and scanning electron microscopy images indicate the presence of crystalline phases after metal exchange, and the inductively coupled plasma–mass spectroscopy analysis confirmed the exchange of metals by means of the PSE technique. The nitrogen adsorption isotherms established the production of microporous M-MOF-5. Although the additional metal ions decreased the surface area, the exchanged materials displayed unique features in the gravimetric uptake of hydrogen. The parent MOF-5 and the metal exchanged materials (Ni-MOF-5, Co-MOF-5, and Fe-MOF-5) demonstrated hydrogen capacities of 1.46, 1.53, 1.53, and 0.99 wt.%, respectively. The metal-exchanged Ni-MOF-5 and Co-MOF-5 revealed slightly higher H2 uptake in comparison with MOF-5; however, the Fe-MOF-5 showed a decrease in uptake due to partial discrete complex formation (discrete complexes with one or more metal ions) with less crystalline nature. The Sips model was found to be excellent in describing the H2 adsorption isotherms with a correlation coefficient ≅ 1. The unique hydrogen uptakes of Ni− and Co-MOF-5 shown in this study pave the way for further improvement in hydrogen uptake.


2021 ◽  
Author(s):  
Hudson de Aguiar Bicalho ◽  
P. Rafael Donnarumma ◽  
Victor Quezada-Novoa ◽  
Hatem M. Titi ◽  
Ashlee J Howarth

<div> <p>Post-synthetic modification (PSM) of metal–organic frameworks (MOFs) is an important strategy for accessing MOF analogues that cannot be easily synthesized <i>de novo</i>. In this work, the rare-earth (RE) cluster-based MOF, Y-CU-10, with <b>shp</b> topology was modified through transmetallation using a series of RE ions, including: La(III), Nd(III), Eu(III), Tb(III), Er(III), Tm(III), and Yb(III). In all cases, metal-exchange higher than 70 % was observed, with reproducible results. All transmetallated materials were fully characterized and compared to the parent MOF, Y-CU-10, in regards to crystallinity, surface area, and morphology. Additionally, single-crystal X-ray diffraction (SCXRD) measurements were performed to provide further evidence of transmetallation occurring in the nonanuclear cluster nodes of the MOF. </p> </div>


2021 ◽  
Author(s):  
Francesco Walenszus ◽  
Jack D. Evans ◽  
Volodymyr Bon ◽  
Friedrich Schwotzer ◽  
Irena Senkovska ◽  
...  

The flexibility of soft porous crystals, i.e., their ability to respond to external stimuli with structural changes, is one of the most fascinating features of metal-organic frameworks. In addition to breathing and swelling phenomena of flexible MOFs, negative gas adsorption and pressure amplification is one of the more recent discoveries in this field, initially observed in the cubic DUT-49 framework. In recent years the structural contraction was monitored by physisorption, X‑ray diffraction, NMR and EPR techniques, providing only limited information about the electronic structure of the ligand. In this work we designed a new ligand with a fluorescent core in the linker backbone and synthesized three new MOFs, isoreticular to DUT-49, denoted as DUT‑140(M) (M - Cu, Co, Zn) crystalizing in space group. DUT‑140(Cu) can be desolvated and is highly porous with an accessible apparent surface area of 4870 m2g-1 and a pore volume of 2.59 cm3g-1. Furthermore, it shows flexibility and NGA upon adsorption of subcritical gases. DUT-140(Zn), synthesized using post-synthetic metal exchange, could only be studied with guests in the pores. In addition to the investigation of the adsorption behavior of DUT-140(Cu) spectroscopic and computational methods were used to study the light absorption properties.


2015 ◽  
Vol 51 (11) ◽  
pp. 2056-2059 ◽  
Author(s):  
Dengrong Sun ◽  
Wenjun Liu ◽  
Mei Qiu ◽  
Yongfan Zhang ◽  
Zhaohui Li

Introduction of Ti as a mediator in Ti substituted NH2-Uio-66(Zr) is an effective way to improve its photocatalytic performance.


2017 ◽  
Vol 29 (21) ◽  
pp. 8963-8967 ◽  
Author(s):  
Jara G. Santaclara ◽  
Alma I. Olivos-Suarez ◽  
Adrian Gonzalez-Nelson ◽  
Dmitrii Osadchii ◽  
Maxim A. Nasalevich ◽  
...  

2013 ◽  
Vol 1 (18) ◽  
pp. 5453 ◽  
Author(s):  
Marianne Lalonde ◽  
Wojciech Bury ◽  
Olga Karagiaridi ◽  
Zachary Brown ◽  
Joseph T. Hupp ◽  
...  

2021 ◽  
Author(s):  
Hudson de Aguiar Bicalho ◽  
P. Rafael Donnarumma ◽  
Victor Quezada-Novoa ◽  
Hatem M. Titi ◽  
Ashlee J Howarth

<div> <p>Post-synthetic modification (PSM) of metal–organic frameworks (MOFs) is an important strategy for accessing MOF analogues that cannot be easily synthesized <i>de novo</i>. In this work, the rare-earth (RE) cluster-based MOF, Y-CU-10, with <b>shp</b> topology was modified through transmetallation using a series of RE ions, including: La(III), Nd(III), Eu(III), Tb(III), Er(III), Tm(III), and Yb(III). In all cases, metal-exchange higher than 70 % was observed, with reproducible results. All transmetallated materials were fully characterized and compared to the parent MOF, Y-CU-10, in regards to crystallinity, surface area, and morphology. Additionally, single-crystal X-ray diffraction (SCXRD) measurements were performed to provide further evidence of transmetallation occurring in the nonanuclear cluster nodes of the MOF. </p> </div>


2021 ◽  
Author(s):  
Francesco Walenszus ◽  
Jack D. Evans ◽  
Volodymyr Bon ◽  
Friedrich Schwotzer ◽  
Irena Senkovska ◽  
...  

The flexibility of soft porous crystals, i.e., their ability to respond to external stimuli with structural changes, is one of the most fascinating features of metal-organic frameworks. In addition to breathing and swelling phenomena of flexible MOFs, negative gas adsorption and pressure amplification is one of the more recent discoveries in this field, initially observed in the cubic DUT-49 framework. In recent years the structural contraction was monitored by physisorption, X‑ray diffraction, NMR and EPR techniques, providing only limited information about the electronic structure of the ligand. In this work we designed a new ligand with a fluorescent core in the linker backbone and synthesized three new MOFs, isoreticular to DUT-49, denoted as DUT‑140(M) (M - Cu, Co, Zn) crystalizing in space group. DUT‑140(Cu) can be desolvated and is highly porous with an accessible apparent surface area of 4870 m2g-1 and a pore volume of 2.59 cm3g-1. Furthermore, it shows flexibility and NGA upon adsorption of subcritical gases. DUT-140(Zn), synthesized using post-synthetic metal exchange, could only be studied with guests in the pores. In addition to the investigation of the adsorption behavior of DUT-140(Cu) spectroscopic and computational methods were used to study the light absorption properties.


Sign in / Sign up

Export Citation Format

Share Document