Mechanistic Study of the Selective Methanation of CO over Ru/TiO2 Catalysts: Effect of Metal Crystallite Size on the Nature of Active Surface Species and Reaction Pathways

2017 ◽  
Vol 121 (9) ◽  
pp. 5058-5068 ◽  
Author(s):  
Paraskevi Panagiotopoulou ◽  
Xenophon E. Verykios
2021 ◽  
Author(s):  
Quinton Bruch ◽  
Santanu Malakar ◽  
Alan Goldman ◽  
Alexander Miller

Molybdenum complexes supported by tridentate pincer ligands are exceptional catalysts for dinitrogen fixation using chemical reductants, but little is known about their prospects for electrochemical reduction of dinitrogen. The viability of electrochemical N2 binding and splitting by a molybdenum(III) pincer complex, (pyPNP)MoBr3 (pyPNP = 2,6-bis(tBu2PCH2)-C5H3N)), is established in this work, providing a foundation for a detailed mechanistic study of electrode-driven formation of the nitride complex (pyPNP)Mo(N)Br. Electrochemical kinetic analysis, optical and vibrational spectroelectrochemical monitoring, and computational studies point to two reaction pathways: in the “reaction layer” pathway, the molybdenum(III) precursor is reduced by 2e– and generates a bimetallic molybdenum(I) Mo2(-N2) species capable of N–N bond scission. In the “bulk solution” pathway the precursor is reduced by 3e– at the electrode surface to generate molybdenum(0) species that undergo chemical redox reactions via comproportionation in the bulk solution away from the electrode surface to generate the same bimetallic molybdenum(I) species capable of N2 cleavage. The comproportionation reactions reveal the surprising intermediacy of dimolybdenum(0) complex trans,trans-[(pyPNP)Mo(N2)2](-N2) in N2 splitting pathways. The same “over-reduced” molybdenum(0) species was also found to cleave N2 upon addition of lutidinium, an acid frequently used in catalytic reduction of dinitrogen.


ACS Catalysis ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 8719-8725 ◽  
Author(s):  
Maha A. Aljuhani ◽  
Ziyun Zhang ◽  
Samir Barman ◽  
Mohamad El Eter ◽  
Laura Failvene ◽  
...  

2015 ◽  
Vol 19 (01-03) ◽  
pp. 492-499 ◽  
Author(s):  
Scott D. Hicks ◽  
Silei Xiong ◽  
Curt J. Bougher ◽  
Grigori A. Medvedev ◽  
James Caruthers ◽  
...  

A water-soluble manganese porphyrin complex was examined for the catalytic formation of chlorine dioxide from chlorite under ambient temperature at pH 5.00 and 6.90. Quantitative kinetic modeling allowed for the deduction of a mechanism that accounts for all experimental observations. Catalysis is initiated via an OAT (Oxygen Atom Transfer) reaction resulting in formation of a putative manganese(V) oxo species, which undergoes ET (Electron Transfer) with chlorite to form chlorine dioxide. As chlorine dioxide accumulates in solution, chlorite consumption slows down and ClO 2 reaches a maximum as the system reaches equilibrium. In phosphate buffer at pH 6.90, manganese(IV) oxo accumulates and its reaction with ClO 2 gives ClO 3-. However, at pH 5.00 acetate buffer proton coupled electron transfer (PCET) from chlorite to manganese(IV) oxo is fast and irreversible leading to chlorate formation only via the putative manganese(V) oxo species. These differences underscore how PCET rates affect reaction pathways and mechanism. The ClO 2 product can be collected from the aqueous reaction mixture via purging with an inert gas, allowing for the preparation of chlorine dioxide on-demand.


2017 ◽  
Vol 19 (2) ◽  
pp. 1074-1082 ◽  
Author(s):  
Xin Zhao ◽  
Jianyong Feng ◽  
Shi Chen ◽  
Yizhong Huang ◽  
Tze Chien Sum ◽  
...  

Oxygen vacancies have different impacts on the charge transfer efficiency of pristine and Ti-doped hematite through active surface species.


Author(s):  
Carsten Schröder ◽  
Philipp A. Haugg ◽  
Ann-Katrin Baumann ◽  
Marvin C. Schmidt ◽  
Jan Smyczek ◽  
...  

2013 ◽  
Vol 117 (11) ◽  
pp. 5774-5784 ◽  
Author(s):  
Michael A. Henderson ◽  
Mingmin Shen ◽  
Zhi-Tao Wang ◽  
Igor Lyubinetsky

Sign in / Sign up

Export Citation Format

Share Document