pincer ligands
Recently Published Documents


TOTAL DOCUMENTS

391
(FIVE YEARS 119)

H-INDEX

45
(FIVE YEARS 6)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 231
Author(s):  
Yao Cui ◽  
Jixian Wang ◽  
Lei Yu ◽  
Ying Xu ◽  
David J. Young ◽  
...  

Solid supports functionalized with molecular metal catalysts combine many of the advantages of heterogeneous and homogeneous catalysis. A (NNN)Ru-incorporated porous organic polymer (POP-bp/bbpRuCl3) exhibited high catalytic efficiency and broad functional group tolerance in the C–C cross-coupling of secondary and primary alcohols to give β-alkylated secondary alcohols. This catalyst demonstrated excellent durability during successive recycling without leaching of Ru which is ascribed to the strong binding of the pincer ligands to the metal ions.


2022 ◽  
Author(s):  
Man-Man Xue ◽  
Jiarui Chang ◽  
Jie Zhang ◽  
Xuenian Chen

Diphosphino-boryl-based PBP pincer platinum thiolate complexes, [Pt(SR){B(NCH2PtBu2)2-1,2-C6H4}] (R = H, 1a; Ph, 1b), and benzene-based bisphosphinite POCOP pincer platinum thiolate complexes, [Pt(SR)(tBu2PO)2-1,3-C6H3] (R = H, 2a; Ph, 2b), were prepared...


2022 ◽  
Author(s):  
Jimin Yang ◽  
Qingde Zhuo ◽  
Zhenbo Mo ◽  
Zhaomin Hou ◽  
Yi Luo

The mechanism of dinitrogen cleavage by a PNP-coordinated dititanium polyhydride complex has been computationally investigated. A “multi-state reactivity” scenario has been disclosed for the whole process of N2 coordination and...


2021 ◽  
Author(s):  
◽  
Bradley George Anderson

<p>This thesis details the synthesis of new examples of electron-poor pincer ligands, featuring bis(pentafluorophenyl)phosphine donors attached to 1,3-substituted phenylene or 2,6-substituted pyridine backbones, to create tridentate PCP and PNP ligands. The effect of the ligands’ electronic nature on the coordination chemistry and ease of pincer complex synthesis with late transition metals is discussed, as is the catalytic activity of the resultant palladium pincer complexes in the Heck and Suzuki reactions. Symmetric PCP and PNP ligands possessing bis(pentafluorophenyl)phosphinite and bis(pentafluorophenyl)phosphoramine functionalities were synthesised by reaction of bis(pentafluorophenyl)phosphine bromide with resorcinol, 3-hydroxybenzyl-di- tert -butylphosphine, 2,6-diaminopyridine, or 2,6-dihydroxypyridine, affording 1,3- [(C6F5)2PO]2C6H4 (POCOPH, 1), 1-[(C6F5)2PO]-3-(tBu2PCH2)2C6H4 (POCCPH, 3), 2,6-[(C6F5)2PNH]2C6H3N (PNNNP, 10), and 2,6-[(C6F5)2PO]2C6H3N (PONOP, 11) respectively. The previously reported 1,3-[(C6F5)2PCH2]2C6H4 (PCCCPH, 2) was also synthesised, with the literature yield improved upon by the use of magnesium-anthracene to generate the required Grignard reagent. The coordination chemistry of the POCOPH ligand 1 with platinum(0) alkene and platinum(II) dimethyl precursors revealed an affinity for the formation of cis-bridged oligomeric structures. The dimer [(POCOPH)Pt(nb)]2 (14, nb = norbornene) was isolated and crystallographically characterised from the reaction between 1 and [Pt(nb)3]. The solid state structure revealed the presence of stabilising - interactions between the aromatic ligand backbones, which were also observed in solution by 1H NMR spectroscopy. Reactions of ligand 1 with platinum and palladium dichloride or chloromethyl starting materials led to rare examples of cis,trans-dimers of the type cis,trans-[(POCOPH)MClX]2 (M = Pd, Pt; X = Cl, Me). In part due to facile dimer formation with 1, metallation of the ligand backbone to form the tridentate pincer complex [(POCOP)PtCl] (25) required long reaction times and high temperatures. It was observed that platinum dichloride starting materials with more strongly binding ancillary ligands were less prone to oligomer formation, and could facilitate more rapid metallation to from 25. More facile pincer complex formation was also observed for more electron-rich ligands with both PCP and PNP pincer ligands. The electron poor platinum and palladium POCOP, PCCCP, and POCCP pincer complexes (where the free ligand had been deprotonated upon metallation) were synthesised and subsequently converted into the metal carbonyl species [(PCP)M(CO)]+. Analysis of C−O stretching frequencies by infrared spectroscopy confirmed complexes of POCOP ligand 1 were the most electron poor, while those of POCCP ligand 3 were the most electron rich. Decarbonylation of the palladium pincer complexes was observed in solution and in the solid state, and was more facile for complexes with a higher wavenumber C−O stretch. Reaction of the [(PCP)PtCl] pincer complexes with methyl nucleophiles revealed that treatment with methylmagnesium iodide resulted in halide exchange, while methyllithium promoted nucleophilic attack at phosphorus. Spectroscopic data indicated that in one instance this led to pentafluorophenyl migration to the metal centre to form a [(PCP)Pt(C6F5)] complex. Dimethylzinc was successful in methylating the platinum PCP complexes; however, it was observed to degrade the palladium PCP pincer complexes. Treatment of the rhodium PNP pincer complex [(PNNNP)RhCl] (49) with dimethylzinc also resulted in degradation, which spectroscopic evidence indicated proceeded via ligand deprotonation and the formation of a zinc adduct of 49. Low temperature protonolysis of the [(PCP)PtMe] species did not reveal any information about possible interactions between the metal and liberated methane. The catalytic activity of the electron-poor [(PCP)PdCl] complexes were assessed in the Heck and Suzuki cross-coupling reactions. The complexes of 1, 2, and 3 were all found to possess only modest activity in the Heck reaction, functioning as precatalysts which decomposed to give catalytically-active Pd(0) colloids. Under milder Suzuki reaction conditions, the most electron-poor complex, [(POCOP)PdCl] (28) proved to be one of the most active pincer catalysts known for this reaction, able to achieve a turnover number of 176,000 for the coupling of electronically-deactivated aryl bromides and phenylboronic acid. Mercury poisoning tests revealed that Suzuki reactions catalysed by 28 proceeded via a homogeneous active species.</p>


2021 ◽  
Author(s):  
◽  
Bradley George Anderson

<p>This thesis details the synthesis of new examples of electron-poor pincer ligands, featuring bis(pentafluorophenyl)phosphine donors attached to 1,3-substituted phenylene or 2,6-substituted pyridine backbones, to create tridentate PCP and PNP ligands. The effect of the ligands’ electronic nature on the coordination chemistry and ease of pincer complex synthesis with late transition metals is discussed, as is the catalytic activity of the resultant palladium pincer complexes in the Heck and Suzuki reactions. Symmetric PCP and PNP ligands possessing bis(pentafluorophenyl)phosphinite and bis(pentafluorophenyl)phosphoramine functionalities were synthesised by reaction of bis(pentafluorophenyl)phosphine bromide with resorcinol, 3-hydroxybenzyl-di- tert -butylphosphine, 2,6-diaminopyridine, or 2,6-dihydroxypyridine, affording 1,3- [(C6F5)2PO]2C6H4 (POCOPH, 1), 1-[(C6F5)2PO]-3-(tBu2PCH2)2C6H4 (POCCPH, 3), 2,6-[(C6F5)2PNH]2C6H3N (PNNNP, 10), and 2,6-[(C6F5)2PO]2C6H3N (PONOP, 11) respectively. The previously reported 1,3-[(C6F5)2PCH2]2C6H4 (PCCCPH, 2) was also synthesised, with the literature yield improved upon by the use of magnesium-anthracene to generate the required Grignard reagent. The coordination chemistry of the POCOPH ligand 1 with platinum(0) alkene and platinum(II) dimethyl precursors revealed an affinity for the formation of cis-bridged oligomeric structures. The dimer [(POCOPH)Pt(nb)]2 (14, nb = norbornene) was isolated and crystallographically characterised from the reaction between 1 and [Pt(nb)3]. The solid state structure revealed the presence of stabilising - interactions between the aromatic ligand backbones, which were also observed in solution by 1H NMR spectroscopy. Reactions of ligand 1 with platinum and palladium dichloride or chloromethyl starting materials led to rare examples of cis,trans-dimers of the type cis,trans-[(POCOPH)MClX]2 (M = Pd, Pt; X = Cl, Me). In part due to facile dimer formation with 1, metallation of the ligand backbone to form the tridentate pincer complex [(POCOP)PtCl] (25) required long reaction times and high temperatures. It was observed that platinum dichloride starting materials with more strongly binding ancillary ligands were less prone to oligomer formation, and could facilitate more rapid metallation to from 25. More facile pincer complex formation was also observed for more electron-rich ligands with both PCP and PNP pincer ligands. The electron poor platinum and palladium POCOP, PCCCP, and POCCP pincer complexes (where the free ligand had been deprotonated upon metallation) were synthesised and subsequently converted into the metal carbonyl species [(PCP)M(CO)]+. Analysis of C−O stretching frequencies by infrared spectroscopy confirmed complexes of POCOP ligand 1 were the most electron poor, while those of POCCP ligand 3 were the most electron rich. Decarbonylation of the palladium pincer complexes was observed in solution and in the solid state, and was more facile for complexes with a higher wavenumber C−O stretch. Reaction of the [(PCP)PtCl] pincer complexes with methyl nucleophiles revealed that treatment with methylmagnesium iodide resulted in halide exchange, while methyllithium promoted nucleophilic attack at phosphorus. Spectroscopic data indicated that in one instance this led to pentafluorophenyl migration to the metal centre to form a [(PCP)Pt(C6F5)] complex. Dimethylzinc was successful in methylating the platinum PCP complexes; however, it was observed to degrade the palladium PCP pincer complexes. Treatment of the rhodium PNP pincer complex [(PNNNP)RhCl] (49) with dimethylzinc also resulted in degradation, which spectroscopic evidence indicated proceeded via ligand deprotonation and the formation of a zinc adduct of 49. Low temperature protonolysis of the [(PCP)PtMe] species did not reveal any information about possible interactions between the metal and liberated methane. The catalytic activity of the electron-poor [(PCP)PdCl] complexes were assessed in the Heck and Suzuki cross-coupling reactions. The complexes of 1, 2, and 3 were all found to possess only modest activity in the Heck reaction, functioning as precatalysts which decomposed to give catalytically-active Pd(0) colloids. Under milder Suzuki reaction conditions, the most electron-poor complex, [(POCOP)PdCl] (28) proved to be one of the most active pincer catalysts known for this reaction, able to achieve a turnover number of 176,000 for the coupling of electronically-deactivated aryl bromides and phenylboronic acid. Mercury poisoning tests revealed that Suzuki reactions catalysed by 28 proceeded via a homogeneous active species.</p>


2021 ◽  
Author(s):  
Kazimer Skubi ◽  
Reagan Hooper ◽  
Brandon Mercado ◽  
Melissa Bollmeyer ◽  
Samantha MacMillan ◽  
...  

SCS pincer ligands have an interesting combination of strong-field and weak-field donors that is also present in the nitrogenase active site. Here, we explore the electronic structures of iron(II) and iron(III) complexes with such a pincer ligand, bearing a monodentate phosphine, thiolate S donor, amide N donor, ammonia, or CO. The ligand scaffold features a protonresponsive thioamide site, and the protonation state of the ligand greatly influences the reduction potential of iron in the phosphine complex. The N–H bond dissociation free energy can be quantitated as 56 ± 2 kcal/mol. EPR spectroscopy and SQUID magnetometry measurements show that the iron(III) complexes with S and N as the fourth donors have an intermediate spin (S = 3/2) ground state with large zero field splitting, and X-ray absorption spectra show high Fe–S covalency. The Mössbauer spectrum changes drastically with the position of a nearby alkali metal cation in the iron(III) amido complex, and DFT calculations explain this phenomenon through a change between having the doubly-occupied orbital as dz2 or dyz, as the former is more influenced by the nearby positive charge.


2021 ◽  
Author(s):  
Marissa Clapson ◽  
Justin Kirkland ◽  
Warren Piers ◽  
Daniel Ess ◽  
Benjamin Gelfand ◽  
...  

Cobalt(I) complexes supported by a series of PCcarbeneP pincer ligands of varying donicity, differing in the aryl group linking the phosphine arms with the anchoring carbon donor, are described. Addition of the proligands to cobalt bromide results in the formation of a series of cobalt(II) tetrahedral complexes, Ln-1, which serve as excellent precur-sors to the corresponding PCalkylP and PCcarbeneP complexes. Square planar cobalt PCcarbeneP complexes, L2R-3-X (X = Cl, Br), are readily synthesized by addition of a bulky aryloxide radical to the corresponding PCalkylP complex, L1-2-Br or via addition of L2R to ClCo(PPh3)3 in the presence of trityl radical or by addition of NaHBEt3 and trityl radical to iso-lated L2R-1. For the L2NMe2 PCcarbeneP complexes, salt metathesis reactions with either CsOH·H2O, LiCH2TMS, or LiNH2 result in the corresponding hydroxo, alkyl, and amine complexes, L2NMe2-3-R (R = OH, CH2TMS, NH2). Reaction of L2NMe2-3-OH with benzoic acid affords the 2-O2CPh derivative The nature of the carbene bond in either ligand plat-form as well as the effects of the X-type capping ligand on the Co=C bond are explored computationally and show that triplet structures are relatively more stable in for the less electron donating ligand L1 while singlet Co(I) carbenes dominate for the more electron rich L2 derivatives. For L2NMe2 complexes, the effect of the trans ligand X was also probed. Pi donors imbue the carbene with singlet character while the strongly  donating alkyl derivative exhibits significant triplet character.


Sign in / Sign up

Export Citation Format

Share Document