Property-Oriented Material Design Based on a Data-Driven Machine Learning Technique

2020 ◽  
Vol 11 (10) ◽  
pp. 3920-3927 ◽  
Author(s):  
Qionghua Zhou ◽  
Shuaihua Lu ◽  
Yilei Wu ◽  
Jinlan Wang

Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2910
Author(s):  
Andreas Andreou ◽  
Constandinos X. Mavromoustakis ◽  
George Mastorakis ◽  
Jordi Mongay Batalla ◽  
Evangelos Pallis

Various research approaches to COVID-19 are currently being developed by machine learning (ML) techniques and edge computing, either in the sense of identifying virus molecules or in anticipating the risk analysis of the spread of COVID-19. Consequently, these orientations are elaborating datasets that derive either from WHO, through the respective website and research portals, or from data generated in real-time from the healthcare system. The implementation of data analysis, modelling and prediction processing is performed through multiple algorithmic techniques. The lack of these techniques to generate predictions with accuracy motivates us to proceed with this research study, which elaborates an existing machine learning technique and achieves valuable forecasts by modification. More specifically, this study modifies the Levenberg–Marquardt algorithm, which is commonly beneficial for approaching solutions to nonlinear least squares problems, endorses the acquisition of data driven from IoT devices and analyses these data via cloud computing to generate foresight about the progress of the outbreak in real-time environments. Hence, we enhance the optimization of the trend line that interprets these data. Therefore, we introduce this framework in conjunction with a novel encryption process that we are proposing for the datasets and the implementation of mortality predictions.



2019 ◽  
Vol 31 (4) ◽  
pp. 865-884 ◽  
Author(s):  
Maroua Said ◽  
Khaoula ben Abdellafou ◽  
Okba Taouali


2021 ◽  
Vol 42 ◽  
pp. 103012
Author(s):  
Van Minh Duong ◽  
Thanh Nhan Tran ◽  
Akhil Garg ◽  
Thinh Gia Phung ◽  
Van Man Tran ◽  
...  




Atmosphere ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 111 ◽  
Author(s):  
Chul-Min Ko ◽  
Yeong Yun Jeong ◽  
Young-Mi Lee ◽  
Byung-Sik Kim

This study aimed to enhance the accuracy of extreme rainfall forecast, using a machine learning technique for forecasting hydrological impact. In this study, machine learning with XGBoost technique was applied for correcting the quantitative precipitation forecast (QPF) provided by the Korea Meteorological Administration (KMA) to develop a hydrological quantitative precipitation forecast (HQPF) for flood inundation modeling. The performance of machine learning techniques for HQPF production was evaluated with a focus on two cases: one for heavy rainfall events in Seoul and the other for heavy rainfall accompanied by Typhoon Kong-rey (1825). This study calculated the well-known statistical metrics to compare the error derived from QPF-based rainfall and HQPF-based rainfall against the observational data from the four sites. For the heavy rainfall case in Seoul, the mean absolute errors (MAE) of the four sites, i.e., Nowon, Jungnang, Dobong, and Gangnam, were 18.6 mm/3 h, 19.4 mm/3 h, 48.7 mm/3 h, and 19.1 mm/3 h for QPF and 13.6 mm/3 h, 14.2 mm/3 h, 33.3 mm/3 h, and 12.0 mm/3 h for HQPF, respectively. These results clearly indicate that the machine learning technique is able to improve the forecasting performance for localized rainfall. In addition, the HQPF-based rainfall shows better performance in capturing the peak rainfall amount and spatial pattern. Therefore, it is considered that the HQPF can be helpful to improve the accuracy of intense rainfall forecast, which is subsequently beneficial for forecasting floods and their hydrological impacts.



Author(s):  
Fahad Taha AL-Dhief ◽  
Nurul Mu'azzah Abdul Latiff ◽  
Nik Noordini Nik Abd. Malik ◽  
Naseer Sabri ◽  
Marina Mat Baki ◽  
...  




2021 ◽  
Author(s):  
Alexandre Oliveira Marques ◽  
Aline Nonato Sousa ◽  
Veronica Pereira Bernardes ◽  
Camila Hipolito Bernardo ◽  
Danielle Monique Reis ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document