scholarly journals Accurate Many-Body Repulsive Potentials for Density-Functional Tight Binding from Deep Tensor Neural Networks

2020 ◽  
Vol 11 (16) ◽  
pp. 6835-6843 ◽  
Author(s):  
Martin Stöhr ◽  
Leonardo Medrano Sandonas ◽  
Alexandre Tkatchenko
2019 ◽  
Author(s):  
Chiara Panosetti ◽  
Artur Engelmann ◽  
Lydia Nemec ◽  
Karsten Reuter ◽  
Johannes T. Margraf

The Density-Functional Tight Binding (DFTB) method is a popular semiempirical approximation to Density Functional Theory (DFT). In many cases, DFTB can provide comparable accuracy to DFT at a fraction of the cost, enabling simulations on length- and time-scales that are unfeasible with first principles DFT. At the same time (and in contrast to empirical interatomic potentials and force-fields), DFTB still offers direct access to electronic properties such as the band-structure. These advantages come at the cost of introducing empirical parameters to the method, leading to a reduced transferability compared to true first-principle approaches. Consequently, it would be very useful if the parameter-sets could be routinely adjusted for a given project. While fairly robust and transferable parameterization workflows exist for the electronic structure part of DFTB, the so-called repulsive potential Vrep poses a major challenge. In this paper we propose a machine-learning (ML) approach to fitting Vrep, using Gaussian Process Regression (GPR). The use of GPR circumvents the need for non-linear or global parameter optimization, while at the same time offering arbitrary flexibility in terms of the functional form. We also show that the proposed method can be applied to multiple elements at once, by fitting repulsive potentials for organic molecules containing carbon, hydrogen and oxygen. Overall, the new approach removes focus from the choice of functional form and parameterization procedure, in favour of a data-driven philosophy.


2018 ◽  
Vol 14 (5) ◽  
pp. 2341-2352 ◽  
Author(s):  
Julian J. Kranz ◽  
Maximilian Kubillus ◽  
Raghunathan Ramakrishnan ◽  
O. Anatole von Lilienfeld ◽  
Marcus Elstner

2021 ◽  
Vol 125 (10) ◽  
pp. 2184-2196
Author(s):  
Aulia Sukma Hutama ◽  
Chien-pin Chou ◽  
Yoshifumi Nishimura ◽  
Henryk A. Witek ◽  
Stephan Irle

2020 ◽  
Vol 16 (4) ◽  
pp. 2181-2191 ◽  
Author(s):  
Chiara Panosetti ◽  
Artur Engelmann ◽  
Lydia Nemec ◽  
Karsten Reuter ◽  
Johannes T. Margraf

2019 ◽  
Vol 5 (12) ◽  
pp. eaax0024 ◽  
Author(s):  
Martin Stöhr ◽  
Alexandre Tkatchenko

Quantum-mechanical van der Waals dispersion interactions play an essential role in intraprotein and protein-water interactions—the two main factors affecting the structure and dynamics of proteins in water. Typically, these interactions are only treated phenomenologically, via pairwise potential terms in classical force fields. Here, we use an explicit quantum-mechanical approach of density-functional tight-binding combined with the many-body dispersion formalism and demonstrate the relevance of many-body van der Waals forces both to protein energetics and to protein-water interactions. In contrast to commonly used pairwise approaches, many-body effects substantially decrease the relative stability of native states in the absence of water. Upon solvation, the protein-water dispersion interaction counteracts this effect and stabilizes native conformations and transition states. These observations arise from the highly delocalized and collective character of the interactions, suggesting a remarkable persistence of electron correlation through aqueous environments and providing the basis for long-range interaction mechanisms in biomolecular systems.


2017 ◽  
Author(s):  
Majid Mortazavi ◽  
Jan Gerit Brandenburg ◽  
Reinhard J. Maurer ◽  
Alexandre Tkatchenko

<pre><p>Accurate prediction of structure and stability of molecular crystals is crucial in materials science and requires reliable modeling of long-range dispersion interactions. Semi-empirical electronic structure methods are computationally more efficient than their <i>ab initio </i>counterparts, allowing structure sampling with significant speed-ups. Here, we combine the Tkatchenko-Scheffler van-der-Waals method (TS) and the many body dispersion method (MBD) with third-order density functional tight-binding (DFTB3) <i>via</i> a charge population-based method. We find an overall good performance for the X23 benchmark database of molecular crystals, despite an underestimation of crystal volume that can be traced to the DFTB parametrization. We achieve accurate lattice energy predictions with DFT+MBD energetics on top of vdW-inclusive DFTB3 structures, resulting in a speed-up of up to 3000 times compared to a full DFT treatment. This suggests that vdW-inclusive DFTB3 can serve as a viable structural prescreening tool in crystal structure prediction. </p></pre>


2019 ◽  
Author(s):  
Chiara Panosetti ◽  
Artur Engelmann ◽  
Lydia Nemec ◽  
Karsten Reuter ◽  
Johannes T. Margraf

The Density-Functional Tight Binding (DFTB) method is a popular semiempirical approximation to Density Functional Theory (DFT). In many cases, DFTB can provide comparable accuracy to DFT at a fraction of the cost, enabling simulations on length- and time-scales that are unfeasible with first principles DFT. At the same time (and in contrast to empirical interatomic potentials and force-fields), DFTB still offers direct access to electronic properties such as the band-structure. These advantages come at the cost of introducing empirical parameters to the method, leading to a reduced transferability compared to true first-principle approaches. Consequently, it would be very useful if the parameter-sets could be routinely adjusted for a given project. While fairly robust and transferable parameterization workflows exist for the electronic structure part of DFTB, the so-called repulsive potential Vrep poses a major challenge. In this paper we propose a machine-learning (ML) approach to fitting Vrep, using Gaussian Process Regression (GPR). The use of GPR circumvents the need for non-linear or global parameter optimization, while at the same time offering arbitrary flexibility in terms of the functional form. We also show that the proposed method can be applied to multiple elements at once, by fitting repulsive potentials for organic molecules containing carbon, hydrogen and oxygen. Overall, the new approach removes focus from the choice of functional form and parameterization procedure, in favour of a data-driven philosophy.


2006 ◽  
Vol 249 ◽  
pp. 41-46
Author(s):  
Andrey S. Chirkov ◽  
Andrei V. Nazarov

This work is devoted to simulation of the diffusion features of point defects in bcc metals. The properties of point defects have been investigated with the usage of many-body interatomic potentials. This approach, based on the density-functional theory, permitted us to derive more adequate diffusion features of solids. This investigation is carried out within the framework of the Finnis-Sinclair formalism, developed for an assembly of N atoms and represents the secondmoment approximation of the tight-binding theory. We used a new model, based on the molecular static method for simulating the atomic structure near the defect and vacancy migration in pure metals. This approach gives the opportunity to simulate the formation and the migration volumes of the point defects, taking into consideration the influence of pressure on structure and consequently on energy. The diffusion characteristics of bcc α-Fe and anomalous β-Zr have been investigated.


Sign in / Sign up

Export Citation Format

Share Document