Reaction Mechanisms of Photoinduced Quinone Methide Intermediates Formed via Excited-State Intramolecular Proton Transfer or Water-Assisted Excited-State Proton Transfer of 4-(2-Hydroxyphenyl)pyridine

Author(s):  
Yan Guo ◽  
Xuyang Li ◽  
Jiani Ma ◽  
David Lee Phillips
2015 ◽  
Vol 17 (14) ◽  
pp. 9205-9211 ◽  
Author(s):  
Jiani Ma ◽  
Xiting Zhang ◽  
Nikola Basarić ◽  
Peter Wan ◽  
David Lee Phillips

Excited state intramolecular proton transfer from a phenol (naphthol) to a carbon atom of the adjacent aromatic ring and formation of quinone methides was studied by femtosecond time-resolved transient absorption.


2011 ◽  
Vol 89 (3) ◽  
pp. 433-440 ◽  
Author(s):  
Matthew Lukeman ◽  
Misty-Dawn Burns ◽  
Peter Wan

1-Hydroxypyrene (1) shows unusual acid–base chemistry in its singlet excited state. Whereas most hydroxyarenes experience a marked enhancement in their acidity when excited, and rapidly deprotonate to give the corresponding phenolate anion, this is not an important pathway for 1, despite theoretical predictions that 1 should experience enhanced acidity as well. In this work, we demonstrate that 1 undergoes a competing excited state intramolecular proton transfer from the OH to carbon atoms at the 3, 6, and 8 positions of the pyrene ring to give quinone methide intermediates. When the reaction is carried out in D2O, reversion of these quinone methides to starting material results in replacement of the ring hydrogens with deuterium, providing a convenient handle to follow the reaction with NMR spectroscopy and mass spectrometry. The quantum yield for the reaction is 0.025 and appears to not be strongly dependent on the water content when aqueous acetonitrile solutions are used. 1-(2-Hydroxyphenyl)pyrene (19) was prepared and studied and shows similar reactivity to 1.


2004 ◽  
Vol 82 (2) ◽  
pp. 240-253 ◽  
Author(s):  
Matthew Lukeman ◽  
Duane Veale ◽  
Peter Wan ◽  
V Ranjit N. Munasinghe ◽  
John ET Corrie

The photochemistry of naphthols 1, 2, 4, 5 and 9, and phenol 10 has been studied in aqueous solution with the primary aim of exploring the viability of such compounds for naphthoquinone and quinone methide photogeneration, along the lines already demonstrated by our group for phenol derivatives. 1-Naphthol (1) is known to be substantially more acidic than 2-naphthol (2) in the singlet excited state (pKa* = 0.4 and 2.8, respectively) and it was expected that this difference in excited-state acidity might be manifested in higher reactivity of 1-naphthol derivatives for photochemical reactions requiring excited-state naphtholate ions, such as quinone methide formation. Our results show that three types of naphthoquinone methides (26a, 26b, and 27) are readily photogenerated in aqueous solution by irradiation of 1-naphthols. Photolysis of the parent 1-naphthol (1) in neutral aqueous solution gave 1,5-naphthoquinone methide 26a as well as the non-Kekulé 1,8-naphthoquinone methide 26b, both via the process of excited-state (formal) intramolecular proton transfer (ESIPT), based on the observation of deuterium exchange at the 5- and 8-positions, respectively, on photolysis in D2O–CH3CN. A transient assignable to the 1,5-naphthoquinone methide 26a was observed in laser flash photolysis experiments. The isomeric 2-naphthol (2) was unreactive under similar conditions. The more conjugated 1,5-naphthoquinone methide 27 was formed efficiently via photodehydroxylation of 4; isomeric 5 was unreactive. The efficient photosolvolytic reaction observed for 4 opens the way to design related naphthol systems for application as photoreleasable protecting groups by virtue of the long-wavelength absorption of the naphthalene chromophore.Key words: photosolvolysis, excited-state intramolecular proton transfer, quinone methide, photorelease, photoprotonation.


RSC Advances ◽  
2016 ◽  
Vol 6 (88) ◽  
pp. 85574-85581 ◽  
Author(s):  
Wei-Wei Guo ◽  
Xiang-Yang Liu ◽  
Wen-Kai Chen ◽  
Ganglong Cui

We have employed combined electronic structure calculations and “on-the-fly” fewest switches surface-hopping dynamics simulations to study the S1 excited-state intramolecular proton transfer (ESIPT) and decay dynamics of 4-(2′-hydroxyphenyl)pyridine.


Sign in / Sign up

Export Citation Format

Share Document