scholarly journals Observation of the Pockels Effect in Ionic Liquids and Insights into the Length Scale of Potential-Induced Ordering

Langmuir ◽  
2021 ◽  
Vol 37 (17) ◽  
pp. 5193-5201
Author(s):  
Shogo Toda ◽  
Ryan Clark ◽  
Tom Welton ◽  
Shinsuke Shigeto
2015 ◽  
Vol 17 (43) ◽  
pp. 29281-29292 ◽  
Author(s):  
Sang-Won Park ◽  
Soree Kim ◽  
YounJoon Jung

We find a general power-law behavior: , where ζdh ≈ 1.2 for all the ionic liquid models, regardless of charges and the length scale of structural relaxation.


2014 ◽  
Vol 118 (44) ◽  
pp. 12706-12716 ◽  
Author(s):  
Jeevapani J. Hettige ◽  
Juan Carlos Araque ◽  
Claudio J. Margulis

2014 ◽  
Vol 1 (9) ◽  
pp. n/a-n/a ◽  
Author(s):  
Rebecca L. Agapov ◽  
Jonathan B. Boreyko ◽  
Dayrl P. Briggs ◽  
Bernadeta R. Srijanto ◽  
Scott T. Retterer ◽  
...  
Keyword(s):  

Author(s):  
M. Sarikaya ◽  
J. T. Staley ◽  
I. A. Aksay

Biomimetics is an area of research in which the analysis of structures and functions of natural materials provide a source of inspiration for design and processing concepts for novel synthetic materials. Through biomimetics, it may be possible to establish structural control on a continuous length scale, resulting in superior structures able to withstand the requirements placed upon advanced materials. It is well recognized that biological systems efficiently produce complex and hierarchical structures on the molecular, micrometer, and macro scales with unique properties, and with greater structural control than is possible with synthetic materials. The dynamism of these systems allows the collection and transport of constituents; the nucleation, configuration, and growth of new structures by self-assembly; and the repair and replacement of old and damaged components. These materials include all-organic components such as spider webs and insect cuticles (Fig. 1); inorganic-organic composites, such as seashells (Fig. 2) and bones; all-ceramic composites, such as sea urchin teeth, spines, and other skeletal units (Fig. 3); and inorganic ultrafine magnetic and semiconducting particles produced by bacteria and algae, respectively (Fig. 4).


Author(s):  
I-Fei Tsu ◽  
D.L. Kaiser ◽  
S.E. Babcock

A current theme in the study of the critical current density behavior of YBa2Cu3O7-δ (YBCO) grain boundaries is that their electromagnetic properties are heterogeneous on various length scales ranging from 10s of microns to ˜ 1 Å. Recently, combined electromagnetic and TEM studies on four flux-grown bicrystals have demonstrated a direct correlation between the length scale of the boundaries’ saw-tooth facet configurations and the apparent length scale of the electrical heterogeneity. In that work, enhanced critical current densities are observed at applied fields where the facet period is commensurate with the spacing of the Abrikosov flux vortices which must be pinned if higher critical current density values are recorded. To understand the microstructural origin of the flux pinning, the grain boundary topography and grain boundary dislocation (GBD) network structure of [001] tilt YBCO bicrystals were studied by TEM and HRTEM.


1998 ◽  
Vol 08 (PR8) ◽  
pp. Pr8-159-Pr8-166 ◽  
Author(s):  
S. Fouvry ◽  
Ph. Kapsa ◽  
F. Sidoroff ◽  
L. Vincent

1999 ◽  
Vol 09 (PR2) ◽  
pp. Pr2-37 ◽  
Author(s):  
O. Krebs ◽  
P. Voisin ◽  
D. Rondi ◽  
J. L. Gentner ◽  
L. Goldstein ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document