Synthesis of the 8-Deoxy Analogue of 4,9-Anhydro-10-hemiketal-5-deoxy-tetrodotoxin, a Proposed Biosynthetic Precursor of Tetrodotoxin

2021 ◽  
Author(s):  
Tadachika Miyasaka ◽  
Masaatsu Adachi ◽  
Toshio Nishikawa
2019 ◽  
Author(s):  
Seth Herzon ◽  
Alan R. Healy ◽  
kevin wernke ◽  
Chung Sub Kim ◽  
Nicholas Lees ◽  
...  

<div>The clb gene cluster encodes the biosynthesis of metabolites known as precolibactins and colibactins. The clb pathway is found in gut commensal E. coli, and clb metabolites are thought to initiate colorectal cancer via DNA cross-linking. Precolibactin 886 (1) is one of the most complex isolated clb metabolites; it contains a 15-atom macrocycle and an unusual 5-hydroxy-3-oxazoline ring. Here we report confirmation of the structural assignment via a biomimetic synthesis of precolibactin 886 (1) proceeding through the amino alcohol 9. Double oxidation of 9 afforded the unstable α-ketoimine 2 which underwent macrocyclization to precolibactin 886 (1) upon HPLC purification (3% from 9). Studies of the putative precolibactin 886 (1) biosynthetic precursor 2, the model α-ketoimine 25, and the α-dicarbonyl 26 revealed that these compounds are susceptible to nucleophilic rupture of the C36–C37 bond. Moreover, cleavage of 2 produces other known clb metabolites or biosynthetic intermediates. This unexpected reactivity explains the difficulties in isolating full clb metabolites and accounts for the structure of a recently identified colibactin–adenine adduct. The colibactin peptidase ClbP deacylates synthetic precolibactin 886 (1) to form a non-genotoxic pyridone, suggesting precolibactin 886 (1) lies off-path of the major biosynthetic route.</div>


2007 ◽  
Vol 46 (35) ◽  
pp. 6560-6560
Author(s):  
Achim Grube ◽  
Stefan Immel ◽  
Phil S. Baran ◽  
Matthias Köck

ChemInform ◽  
1989 ◽  
Vol 20 (24) ◽  
Author(s):  
J. M. LUENGO ◽  
M. T. ALEMANY ◽  
M. J. ARIN ◽  
M. T. DIEZ ◽  
F. SALTO

ChemInform ◽  
2010 ◽  
Vol 25 (32) ◽  
pp. no-no
Author(s):  
A. KIRSCHNING ◽  
P. BERGON ◽  
J.-J. WANG ◽  
S. BREAZEALE ◽  
H. G. FLOSS

2019 ◽  
Author(s):  
Maxime Jarret ◽  
Victor Turpin ◽  
Aurélien Tap ◽  
Jean-Francois Gallard ◽  
Cyrille Kouklovsky ◽  
...  

We report the enantioselective total syntheses of mavacurans alkaloids, (+)-taberdivarine H, (+)-16-hydoxymethyl-pleiocarpamine, (+)-16-epi-pleiocarpamine, and their postulated biosynthetic precursor 16-formyl-pleiocarpamine. This family of monoterpene indole alkaloids is a target of choice since some of its members are subunits of intricate bisindole alkaloids such as bipleiophylline. Inspired by the biosynthetic hypothesis, we explored an oxidative coupling approach from the geissoschizine framework to form the N1-C16 bond. Quaternization of the aliphatic nitrogen was key to achieve the oxidative coupling induced by KHMDS/I<sub>2 </sub>since<sub> </sub>it hides the nucleophilicity of the aliphatic nitrogen and locks the required cis conformation.


Author(s):  
Neville H. Nicholson ◽  
Keith H. Baggaley ◽  
Robert Cassels ◽  
Mark Davison ◽  
Stephen W. Elson ◽  
...  

1995 ◽  
Vol 36 (41) ◽  
pp. 7455-7458 ◽  
Author(s):  
Koichi Fukase ◽  
Wen-Chi Liu ◽  
Yasuo Suda ◽  
Masato Oikawa ◽  
Akira Wada ◽  
...  

1996 ◽  
Vol 49 (1) ◽  
pp. 19 ◽  
Author(s):  
SJ Rochfort ◽  
RJ Capon

Five new pargueranes, 15-bromoparguer-9(11)-ene-2,7,16,19-tetrol 2,7,16-triacetate (20), 15-bromoparguer-9(11)-ene-2,7,16-triol 2,7-diacetate (21), 15-bromoparguer-9(11)-ene-2,16-diol 2-acetate (22), 15-bromoparguer-9(11)-en-16-ol (23) and 15-bromoisoparguer-9(11)-en-16-ol (24), together with a plausible biosynthetic precursor, preparguerene (25), two known parguerenes , 15-bromoparguer-9(11)-ene-2,7,16,19-tetrol tetraacetate (4) and 15-bromoparguer-9(11)-ene-2,7,16-triol 2,16 diacetate (7), and the known algal metabolites (-)- aromadendrene (17), austradiol acetate (18) and austradiol diacetate (19), have been isolated from a collection of the southern Australian marine red alga Laurencia filiformis. The known synthetic parguerane 15-bromoparguer-9(11)-ene-2,7-16-triol triacetate (5) was also found for thefirst time as a natural product. In addition to securing the structures of new compounds by chemical correlation and detailed spectroscopic analysis, a lausible biosynthetic pathway has been proposed linking preparguerene, parguerene, isoparguerene and secoparguerene carbon skeletons.


Sign in / Sign up

Export Citation Format

Share Document