coupling approach
Recently Published Documents


TOTAL DOCUMENTS

728
(FIVE YEARS 148)

H-INDEX

44
(FIVE YEARS 6)

2022 ◽  
pp. 002199832110635
Author(s):  
Junhong Zhu ◽  
Tim Frerich ◽  
Adli Dimassi ◽  
Michael Koerdt ◽  
Axel S. Herrmann

Structural aerospace composite parts are commonly cured through autoclave processing. To optimize the autoclave process, manufacturing process simulations have been increasingly used to investigate the thermal behavior of the cure assembly. Performing such a simulation, computational fluid dynamics (CFD) coupled with finite element method (FEM) model can be used to deal with the conjugate heat transfer problem between the airflow and solid regions inside the autoclave. A transient CFD simulation requires intensive computing resources. To avoid a long computing time, a quasi-transient coupling approach is adopted to allow a significant acceleration of the simulation process. This approach has been validated for a simple geometry in a previous study. This paper provides an experimental and numerical study on heat transfer in a medium-sized autoclave for a more complicated loading condition and a composite structure, a curved shell with three stringers, that mocks the fuselage structure of an aircraft. Two lumped mass calorimeters are used for the measurement of the heat transfer coefficients (HTCs) during the predefined curing cycle. Owing to some uncertainty in the inlet flow velocity, a correction parameter and calibration method are proposed to reduce the numerical error. The simulation results are compared to the experimental results, which consist of thermal measurements and temperature distributions of the composite shell, to validate the simulation model. This study shows the capability and potential of the quasi-transient coupling approach for the modeling of heat transfer in autoclave processing with reduced computational cost and high correlation between the experimental and numerical results.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zheng-Yi Feng ◽  
Zhao-Ru Shen ◽  
Rui-Chia Zhuang

This study proposes a numerical coupling approach to simulate seismic signals of rockfalls and conducts a parametric analysis to explore the characteristics of the seismic signals generated by rockfalls. To validate the approach, three field rockfall tests were selected for comparison. The rockfall velocity, duration, seismic frequency, Husid plot, Arias intensity, and spectrogram of the seismic signals were compared. We found that friction between rocks and the ground affects rock falling behavior. In addition, the local damping and Rayleigh damping assignments in the numerical model have strong effects on the simulation results. The volume of the falling rock and the falling speed of the rock affect the Arias intensity. The coupling approach proposed could be extended and can potentially be used as a useful tool in rockfall hazard estimations.


2021 ◽  
Author(s):  
Jinhui Zheng ◽  
◽  
Matteo Ciantia ◽  
Jonathan Knappett ◽  
◽  
...  

Computational load of discrete element modelling (DEM) simulations is known to increase with the number of particles. To improve the computational efficiency hybrid methods using continuous elements in the far-field, have been developed to decrease the number of discrete particles required for the model. In the present work, the performance of using such coupling methods is investigated. In particular, the coupled wall method, known as the “wall-zone” method when coupling DEM and the continuum Finite Differences Method (FDM) using the Itasca commercial codes PFC and FLAC respectively, is here analysed. To determine the accuracy and the efficiency of such a coupling approach, 3-point bending tests of cemented materials are simulated numerically. To validate the coupling accuracy first the elastic response of the beam is considered. The advantage of employing such a coupling method is then investigated by loading the beam until failure. Finally, comparing the results between DEM, DEM-FDM coupled and FDM models, the advantages and disadvantages of each method are outlined.


2021 ◽  
Author(s):  
Jieyu Gu ◽  
Kevin Rodriguez ◽  
yuzuru kanda ◽  
Shenghua Yang ◽  
Michal Ociepa ◽  
...  

Vitamin D is a group of seco-steroids with diverse bioactivities. An enormous amount of effort was expended by medicinal chemists to search for Vitamin D analogs that could exhibit pro-differentiating and antiproliferative effects on normal and cancer cells as well as immunomodulatory effects without causing hypercalcemia. A convergent approach for the total synthesis of calcipotriol (brand name: Dovonex), a proven Vitamin D analog used for the treatment of psoriasis, and medicinally relevant synthetic analogs is described. Given the rich synthetic history of the Vitamin D family, a complete novel approach towards both the A-ring and CD-ring is reported. From a retrosynthetic standpoint, hidden symmetry within the decorated A-ring is disclosed, which allowed for scalable quantities of this advanced intermediate. In addition, a radical retrosynthetic approach is described, which highlights an electrochemical reductive coupling as well as an intramolecular hydrogen atom transfer (HAT)-Giese addition to establish the 6,5-trans-carbon skeleton found in the Vitamin D family. Lastly, a late-stage decarboxylative cross-coupling approach allowed for the facile preparation of various C20-arylated derivatives which show promising biological activity in an early bioassay.


2021 ◽  
Author(s):  
Zhou Zhou ◽  
Xiaogai Li ◽  
August Domel ◽  
Emily Dennis ◽  
Marios Georgiadis ◽  
...  

Hippocampal injury is common in traumatic brain injury (TBI) patients, but the underlying pathogenesis remains elusive. In this study, we hypothesize that the presence of the adjacent fluid-containing temporal horn exacerbates the biomechanical vulnerability of the hippocampus. Two finite element models of the human head were used to investigate this hypothesis, one with and one without the temporal horn, and both including a detailed hippocampal subfield delineation. A fluid-structure interaction coupling approach was used to simulate the brain-ventricle interface, in which the intraventricular cerebrospinal fluid was represented by an arbitrary Lagrangian-Eulerian multi-material formation to account for its fluid behavior. By comparing the response of these two models under identical loadings, the model that included the temporal horn predicted increased magnitudes of strain and strain rate in the hippocampus with respect to its counterpart without the temporal horn. This specifically affected cornu ammonis (CA) 1 (CA1), CA2/3, hippocampal tail, subiculum, and the adjacent amygdala and ventral diencephalon. These computational results suggest the presence of the temporal horn is a predisposing factor for the prevalence of hippocampal injury, advancing the understanding of hippocampal injury during head impacts. A corresponding analysis in an imaging cohort of collegiate athletes found that temporal horn size negatively correlates with hippocampal volume in the same subfields, suggesting a possible real-world correlation whereby a larger temporal horn may be associated with decreased hippocampal volume. Our biomechanical and neuroimaging effort collectively highlight the mechanobiological and anatomical interdependency between the hippocampus and temporal horn.


Author(s):  
P. Karuppusamy

It is possible to transmit electricity wirelessly without the need for cables. Wireless power transmission makes it possible to link remote places that would otherwise be cut off from access to reliable electricity. A wireless connection to the power supply is expected in the future. This study describes the experimental results of Wireless Power Transfer (WPT) utilizing a transformer coupling approach and its future potential. This WPT device (WPTD) is used to transmit power using two procedures of energy transfer: radiofrequency coupling and transformer coupling, both of which are magnetic based, in principle. The distance between the transmitter and receiver of the system affects the amount of power that can be sent. Research is performed to establish how far apart the system's transmitter and receiver should be. Magnetic fields may transmit energy between two coils, but the distance between the two coils must be too close for this approach to work. Aside from that, it assesses the setting parameter of a value that has been tabulated using a certain application, in the findings and discussion parts.


2021 ◽  
Vol 53 (12) ◽  
Author(s):  
J. V. Nguepnang ◽  
C. Kenfack-Sadem ◽  
A. Kenfack-Jiotsa ◽  
M. F. C. Fobasso ◽  
Y. Sun

Sign in / Sign up

Export Citation Format

Share Document