Water-Soluble Luminescent Silicon Nanocrystals by Plasma-Induced Acrylic Acid Grafting and PEGylation

Author(s):  
Zhaohan Li ◽  
Advitiya Mahajan ◽  
Himashi P. Andaraarachchi ◽  
Yeonjoo Lee ◽  
Uwe R. Kortshagen
2010 ◽  
Vol 53 (3) ◽  
pp. 623-628 ◽  
Author(s):  
Hortensia Ortega-Ortiz ◽  
Baltazar Gutiérrez-Rodríguez ◽  
Gregorio Cadenas-Pliego ◽  
Luis Ibarra Jimenez

The antimicrobial activity of chitosan and water soluble interpolyelectrolyte complexes of poly(acrylic acid)-chitosan was studied. Chitosans of two different molecular weights were tested at different concentration for 0.5 to 5 g·L-1 as antimicrobial agents against P. aeruginosa and P. oleovorans. In both cases, the best microbial inhibition was obtained with the concentration of 5 g·L-1. However, the interpolyelectrolyte complexes of poly(acrylic acid)-chitosan with composition φ =2 produced higher antibacterial activity than the two chitosans at the concentration of 0.5 g·L-1. The NPEC2 complex was more effective than chitosans. This could be attributed to the number of moles of the amino groups of chitosan and the carboxylic acid groups of the interpolyelectrolyte complexes poly(acrylic acid).


2017 ◽  
Vol 32 (5) ◽  
pp. 528-541 ◽  
Author(s):  
Joshua T Davis ◽  
Paul D Hamilton ◽  
Nathan Ravi

Our objective is to improve on our previous work developing thiol-containing water-soluble copolyacrylamides that form hydrogels in situ for use as vitreous substitutes. In this study, we evaluate the incorporation of acrylic acid by varying the feed ratio of acrylic acid monomer from 0 to 40 mol% in combination with acrylamide, and bis-acryloylcystamine as the reversible cross-linker. After polymerization, the formed copolymer hydrogels were reduced with dithiothreitol to cleave the disulfide cross-linkers. Purified, lyophilized copolymers were made in a concentration range of 12.5–17.5 mg/mL (polymer in deionized water) and were gelled by oxidation. Chemical, physical, optical, and rheological characterizations along with in vitro biocompatibility studies were performed using thiazolyl blue and Electric Cell–substrate Impedance Sensing. Increasing the percentage of acrylic acid caused the polymer to gel at 12.5 mg/mL as opposed to 20 mg/mL without acrylic acid. Storage modulus values covered the range of natural vitreous (1–108 Pa). Biocompatibility testing in tissue culture with retinal pigment epithelial cells (ARPE-19) showed no toxicity at 10 mg/mL or less when compared to controls, higher concentrations. In contrast to our previously reported copolyacrylamide hydrogels, these hydrogels remain optically clear and gel at lower concentrations and have the potential for use as vitreous substitutes.


Langmuir ◽  
1998 ◽  
Vol 14 (7) ◽  
pp. 1554-1559 ◽  
Author(s):  
Guochang Wang ◽  
Fred Henselwood ◽  
Guojun Liu

Sign in / Sign up

Export Citation Format

Share Document