in vitro biocompatibility
Recently Published Documents


TOTAL DOCUMENTS

549
(FIVE YEARS 149)

H-INDEX

48
(FIVE YEARS 9)

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 239
Author(s):  
Madalina Elena David ◽  
Rodica Mariana Ion ◽  
Ramona Marina Grigorescu ◽  
Lorena Iancu ◽  
Alina Maria Holban ◽  
...  

This research focuses on the synthesis of multi-walled carbon nanotubes (MWCNTs) decorated with TiO2 nanoparticles (NPs) and incorporated in cellulose acetate-collagen film in order to obtain a new biomaterial with potential biomedical applications and improved antimicrobial activity. The successful decoration of the MWCNTs with TiO2 NPs was confirmed by several structural and morphological analysis, such as Fourier transformed infrared spectroscopy, Raman spectroscopy, X-ray diffraction and transmission electron microscopy. The obtained nanocomposites were further incorporated into cellulose acetate-collagen films, at different concentrations and absorption kinetics, antimicrobial activity and in vitro biocompatibility of the obtained films was investigated. The antimicrobial tests sustained that the presence of the nanocomposites into the polymeric matrix is an important aspect in increasing and maintaining the antimicrobial activity of the polymeric wound dressings over time. The biocompatibility and cytotoxicity of the obtained films was evaluated using cellular viability/proliferation assay and fluorescent microscopy which revealed the ability of the obtained materials as potential wound dressing biomaterial.


Author(s):  
Solmaz Zakhireh ◽  
Yadollah Omidi ◽  
Younes Beygi-Khosrowshahi ◽  
Ayoub Aghanejad ◽  
Jaleh Barar ◽  
...  

Recently, pollen grains (PGs) have been introduced as drug carriers and scaffolding building blocks. This study aimed to assess the in-vitro biocompatibility of Pistacia vera L. hollow PGs/Fe3O4 nanoparticles (HPGs/Fe3O4NPs) composites using human adipose-derived mesenchymal stem cells (hAD-MSCs). In this regard, iron oxide nanoparticles (Fe3O4NPs) were assembled on the surface of HPGs at different concentrations. The biocompatibility of the prepared composites was assessed through MTT assay, apoptosis-related gene expression and field emission scanning electron microscopy (FE-SEM) analysis. Compared to the bare HPGs, the HPGs/Fe3O4NPs exhibited a biphasic impact on hAD-MSCs. The composite containing 1% Fe3O4NPs demonstrated no cytotoxicity up to 21 days while higher Fe3O4NPs contents and long-term exposure revealed adverse effects on the hAD-MSCs’ growth. The obtained result was verified by the qRT-PCR and morphological analysis carried out through FE-SEM which suggests that a narrow region below 1% Fe3O4NPs may be the optimum choice for medicinal applications of HPGs/Fe3O4NPs microdevices.


2D Materials ◽  
2021 ◽  
Author(s):  
Giacomo Reina ◽  
Amalia Ruiz ◽  
Barbara Richichi ◽  
Giacomo Biagiotti ◽  
Gina Elena Giacomoazzo ◽  
...  

Abstract Boron dipyrromethene derivates (BODIPYs) are promising photosensitisers (PSs) for cancer treatment using photodynamic therapy (PDT). This study investigates the functionalisation of graphene oxide (GO) with a BODIPY derivate for glutathione (GSH) depletion and PDT. The functionalisation of GO with a 3,5-dichloro-8-(4-boronophenyl) BODIPY via a diol derivatisation with the phenyl boronic acid moiety at the meso position of the BODIPY core, allowed to preserve the intrinsic properties of GO. We demonstrated that both chlorine atoms were substituted by GSH in the presence of glutathione transferase (GST), inducing a relevant bathochromic shift in the absorption/emission features and thus generating the active PS. Ex vitro assessment using cell lysates containing cytoplasmatic GST revealed the intracellular catalytic mechanism for the nucleophilic substitution of the GO-BODIPY adduct with GSH. Confocal microscopy studies showed important differences in the cellular uptake of free BODIPY and GO-BODIPY and revealed the coexistence of GO-BODIPY, GO-BODIPY-GS, and GO-BODIPY-GS2 species inside vesicles and in the cytoplasm of the cells after 24 h of incubation. In vitro biocompatibility and safety of GO and GO-BODIPY were evaluated in 2D and 3D models of prostate adenocarcinoma cells (PC-3), where no toxicity was observed up to 100 µg/mL of GO/GO-BODIPY in all treated groups 24 h post-treatment (cell viability > 90%). Only a slight decrease to 80% at 100 µg/mL was observed after 48 h of incubation. We demonstrated the efficacy of a GO adduct containing an α-chlorine-substituted BODIPY for the simultaneous depletion of intracellular GSH and the photogeneration of reactive oxygen species using a halogen white light source (5.4 mW/cm2) with a maximum in the range of 500-800 nm, which significantly reduced cell viability (< 50%) after irradiation. Our study provides a new vision on how to apply BODIPY derivates and potentiate the toxicity of PDT in prostate and other types of cancer.


2021 ◽  
Author(s):  
S López-García ◽  
J Guerrero-Gironés ◽  
MP Pecci-Lloret ◽  
MR Pecci-Lloret ◽  
FJ Rodríguez-Lozano ◽  
...  

SUMMARY Objectives: To analyze the biocompatibility of different desensitizers containing casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) and fluoride in their composition: MI Varnish (MV), Clinpro White Varnish (3M Oral Care), Profluorid Varnish (VOCO), Duraphat (Colgate) and Embrace Varnish (Pulpdent) on human gingival fibroblast cells (hGF). Methods and Materials: Human gingival fibroblast (hGF) cells were exposed to several desensitizer extracts at different concentrations (0.1%, 1%, and 4% eluates). Then, in vitro biocompatibility was studied by analyzing the IC50 value, cell proliferation (MTT assay and cell cycle), cell migration (wound healing assay), cell morphology and F-actin content (immunocytofluorescence), and induction of apoptosis/necrosis (flow cytometry). Data were analyzed by one-way analysis of variance (ANOVA) followed by Tukey test. Results: The lowest cell viability and IC50 were observed in all concentrations of Embrace Varnish-treated hGFs (p&lt;0.001), whereas the highest were exhibited by those treated with Clinpro White Varnish. Similar effects were evidenced when induction of apoptosis/necrosis and cell migration assays were assessed. Finally, MI Varnish, Profluorid Varnish, Duraphat, and Embrace Varnish extracts showed lower numbers of attached cells, some of them with an unusual fibroblastic morphology when cultured with 4% concentration of the varnishes, while Clinpro White Varnish exhibited a similar number of cells with an evident actin cytoskeleton compared to the control group. Conclusions: The results obtained in this study indicate that hGFs show better in vitro biocompatibility after exposure to Clinpro White Varnish, even at the highest concentration employed, making it the most eligible for topical applications. In contrast, Embrace Varnish exhibited a high cytotoxicity towards hGFs that could potentially delay the healing process and regeneration of the oral mucosa, although more studies are needed to confirm this hypothesis.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7597
Author(s):  
Rodrigo Osorio-Arciniega ◽  
Manuel García-Hipólito ◽  
Octavio Alvarez-Fregoso ◽  
Marco Antonio Alvarez-Perez

Composite scaffolds are commonly used strategies and materials employed to achieve similar analogs of bone tissue. This study aims to fabricate 10% wt polylactic acid (PLA) composite fiber scaffolds by the air-jet spinning technique (AJS) doped with 0.5 or 0.1 g of zirconium oxide nanoparticles (ZrO2) for guide bone tissue engineering. ZrO2 nanoparticles were obtained by the hydrothermal method and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). SEM and fourier-transform infrared spectroscopy (FTIR) analyzed the synthesized PLA/ZrO2 fiber scaffolds. The in vitro biocompatibility and bioactivity of the PLA/ZrO2 were studied using human fetal osteoblast cells. Our results showed that the hydrothermal technique allowed ZrO2 nanoparticles to be obtained. SEM analysis showed that PLA/ZrO2 composite has a fiber diameter of 395 nm, and the FITR spectra confirmed that the scaffolds’ chemical characteristics are not affected by the synthesized technique. In vitro studies demonstrated that PLA/ZrO2 scaffolds increased cell adhesion, cellular proliferation, and biomineralization of osteoblasts. In conclusion, the PLA/ZrO2 scaffolds are bioactive, improve osteoblasts behavior, and can be used in tissue bone engineering applications.


2021 ◽  
Vol 22 (23) ◽  
pp. 12747
Author(s):  
Anastasia Yu. Teterina ◽  
Igor V. Smirnov ◽  
Irina S. Fadeeva ◽  
Roman S. Fadeev ◽  
Polina V. Smirnova ◽  
...  

Octacalcium phosphate (OCP, Ca8H2(PO4)6·5H2O) is known to be a possible precursor of biological hydroxyapatite formation of organic bone tissue. OCP has higher biocompatibility and osseointegration rate compared to other calcium phosphates. In this work, the synthesis of low-temperature calcium phosphate compounds and substituted forms of those at physiological temperatures is shown. Strontium is used to improve bioactive properties of the material. Strontium was inserted into the OCP structure by ionic substitution in solutions. The processes of phase formation of low-temperature OCP with theoretical substitution of strontium for calcium up to 50 at.% in conditions close to physiological, i.e., temperature 35–37 °C and normal pressure, were described. The effect of strontium substitution range on changes in the crystal lattice of materials, the microstructural features, surface morphology and biological properties in vitro has been established. The results of the study indicate the effectiveness of using strontium in OCP for improving biocompatibility of OCP based composite materials intended for bone repair.


Author(s):  
Jian Sun ◽  
Xiangcun Zhu ◽  
Zhuo Chen ◽  
Yi Li ◽  
Yonghong Zhang

Abstract Surface mechanical nano-alloying treatment (SMNAT) was employed to fabricate a nanostructured Ti coating on LZ91 Mg–Li alloy. Microstructure, surface hardness and in-vitro biocompatibility of the Ti-coated sample were investigated in comparison with those of an untreated sample. Experimental results showed that a nanostructured Ti coating with a thickness of 35 to 60 μm was formed after SMNAT for 2 h. The average grain size in the top surface of the Ti coating was about 30 nm. The surface of the Ti coating is rougher than that of the untreated LZ91 sample, in which the values of Ra, Rq and Rz were 7.83, 9.57 and 14.85 μm, respectively. The hardness of the Ti coating top surface was about 483 HV. Cell proliferation and differentiation on Ti coated samples were enhanced relative to those on the untreated samples.


Sign in / Sign up

Export Citation Format

Share Document