Kinetic Properties of Aqueous Organic Redox Flow Battery Anolytes Using the Marcus–Hush Theory

2020 ◽  
Vol 3 (9) ◽  
pp. 8833-8841 ◽  
Author(s):  
Eduardo Martínez-González ◽  
Humberto G. Laguna ◽  
Mariano Sánchez-Castellanos ◽  
Sergio S. Rozenel ◽  
Víctor M. Ugalde-Saldivar ◽  
...  
2020 ◽  
Author(s):  
Jules Moutet ◽  
Jose M Veleta ◽  
thomas Gianetti

Redox flow batteries (RFBs) represent a promising technology for grid-scale integration of renewable energy. Redox-active molecular pairs with large potential windows have been identified as key components of these systems. However, cross-contamination problems encountered by the use of different catholyte and anolyte species still limits the development of reliable organic RFBs. Herein, we report the first use of a helical carbenium ion, with three stable oxidation states, as electrolyte for the development of symmetric cells. Cyclic voltammo-amperometric studies were conducted in acetonitrile to assess the essential kinetic properties for flow battery performance and cycling stability of this molecule. The selected [4]helicenium ion was then evaluated by using mono- and bi-electronic cycling experiments, resulting in 745 and 80 cycles respectively, with near-perfect capacity retention. This helical carbenium ion based electrolyte achieved a proof-of-principle 2.12 V open circuit potential as an all-organic symmetric RFB.<br>


2020 ◽  
Author(s):  
Jules Moutet ◽  
Jose M Veleta ◽  
thomas Gianetti

Redox flow batteries (RFBs) represent a promising technology for grid-scale integration of renewable energy. Redox-active molecular pairs with large potential windows have been identified as key components of these systems. However, cross-contamination problems encountered by the use of different catholyte and anolyte species still limits the development of reliable organic RFBs. Herein, we report the first use of a helical carbenium ion, with three stable oxidation states, as electrolyte for the development of symmetric cells. Cyclic voltammo-amperometric studies were conducted in acetonitrile to assess the essential kinetic properties for flow battery performance and cycling stability of this molecule. The selected [4]helicenium ion was then evaluated by using mono- and bi-electronic cycling experiments, resulting in 745 and 80 cycles respectively, with near-perfect capacity retention. This helical carbenium ion based electrolyte achieved a proof-of-principle 2.12 V open circuit potential as an all-organic symmetric RFB.<br>


2020 ◽  
Author(s):  
Jules Moutet ◽  
Jose M Veleta ◽  
thomas Gianetti

Redox flow batteries (RFBs) represent a promising technology for grid-scale integration of renewable energy. Redox-active molecular pairs with large potential windows have been identified as key components of these systems. However, cross-contamination problems encountered by the use of different catholyte and anolyte species still limits the development of reliable organic RFBs. Herein, we report the first use of a helical carbenium ion, with three stable oxidation states, as electrolyte for the development of symmetric cells. Cyclic voltammo-amperometric studies were conducted in acetonitrile to assess the essential kinetic properties for flow battery performance and cycling stability of this molecule. The selected [4]helicenium ion was then evaluated by using mono- and bi-electronic cycling experiments, resulting in 745 and 80 cycles respectively, with near-perfect capacity retention. This helical carbenium ion based electrolyte achieved a proof-of-principle 2.12 V open circuit potential as an all-organic symmetric RFB.<br>


2018 ◽  
Vol 6 (44) ◽  
pp. 21927-21932 ◽  
Author(s):  
Matthew B. Freeman ◽  
Le Wang ◽  
Daniel S. Jones ◽  
Christopher M. Bejger

A water-soluble Co6S8 molecular cluster was prepared and electrochemically analyzed as a potential active material for redox flow battery applications.


Author(s):  
Tongxue Zhang ◽  
Yingqiao Jiang ◽  
Zixuan Zhang ◽  
Jing Xue ◽  
Yuehua Li ◽  
...  

Author(s):  
Sebastiano Bellani ◽  
Leyla Najafi ◽  
Mirko Prato ◽  
Reinier Oropesa-Nuñez ◽  
Beatriz Martín-García ◽  
...  

2021 ◽  
Vol 415 ◽  
pp. 129014
Author(s):  
Yingqiao Jiang ◽  
Gang Cheng ◽  
Yuehua Li ◽  
Zhangxing He ◽  
Jing Zhu ◽  
...  

2015 ◽  
Vol 292 ◽  
pp. 87-94 ◽  
Author(s):  
David Lloyd ◽  
Eva Magdalena ◽  
Laura Sanz ◽  
Lasse Murtomäki ◽  
Kyösti Kontturi

Sign in / Sign up

Export Citation Format

Share Document