battery model
Recently Published Documents


TOTAL DOCUMENTS

579
(FIVE YEARS 198)

H-INDEX

39
(FIVE YEARS 8)

Author(s):  
Jose Alfredo Palacio-Fernádez ◽  
Edwin García Quintero

<span>This article determines the internal parameters of a battery analyzed from its circuit equivalent, reviewing important information that can help to identify the battery’s state of charge (SOC) and its state of health (SOH). Although models that allow the dynamics of different types of batteries to be identified have been developed, few have defined the lead-acid battery model from the analysis of a filtered signal by applying a Kalman filter, particularly taking into account the measurement of noise not just at signal output but also at its input (this is a novelty raised from the experimental). This study proposes a model for lead-acid batteries using tools such as MATLAB<sup>®</sup> and Simulink<sup>®</sup>. First, a method of filtering the input and output signal is presented, and then a method for identifying parameters from 29 charge states is used for a lead-acid battery. Different SOCs are related to different values of open circuit voltage (OCV). Ultimately, improvements in model estimation are shown using a filter that considers system and sensor noise since the modeled and filtered signal is closer to the original signal than the unfiltered modeled signal.</span>


2021 ◽  
Vol 44 ◽  
pp. 103292
Author(s):  
Md. Kamruzzaman ◽  
Xiaohu Zhang ◽  
Michael Abdelmalak ◽  
Di Shi ◽  
Mohammed Benidris

Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2753
Author(s):  
Bo Huang ◽  
Minghui Hu ◽  
Lunguo Chen ◽  
Guoqing Jin ◽  
Shuiping Liao ◽  
...  

Considering that use of measured current as input of a battery model may cause distortion of the model due to low accuracy of the on-board current sensor and that power can be used to indicate energy transmission in an electric vehicle model, the power input internal resistance model is widely used in simulation of whole electric vehicles. However, since no consideration is given to battery polarization and electro-thermal coupling characteristics, the foregoing model cannot be used to describe the internal temperature change of batteries under working conditions. Three contributions are made in the present study: (1) ternary lithium-ion batteries were taken as the research objects and a second-order RC equivalent circuit model with power as the input was established in the present study; (2) A dynamic heat generation rate model suitable for RC equivalent circuits was built based on coupled electrical and thermal characteristics of lithium-ion batteries; (3) An electric model and a two-state equivalent thermal network model were further built and combined by using the heat generation rate model to form a power input electro-thermal model. Parameters of the model so formed were identified offline, and the battery model was verified with respect to accuracy under seven working conditions. The results show that the maximum root mean square error in voltage estimation, current estimation, and surface temperature estimation is 19.38 mV, 9.51 mA, and 0.19 °C respectively, which indicates that the power input electro-thermal model can describe the electrical and thermal dynamic behavior of batteries more accurately and comprehensively than the traditional power input internal resistance model.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7496
Author(s):  
Iván Sanz-Gorrachategui ◽  
Pablo Pastor-Flores ◽  
Antonio Bono-Nuez ◽  
Cora Ferrer-Sánchez ◽  
Alejandro Guillén-Asensio ◽  
...  

Battery parameters such as State of Charge (SoC) and State of Health (SoH) are key to modern applications; thus, there is interest in developing robust algorithms for estimating them. Most of the techniques explored to this end rely on a battery model. As batteries age, their behavior starts differing from the models, so it is vital to update such models in order to be able to track battery behavior after some time in application. This paper presents a method for performing online battery parameter tracking by using the Extremum Seeking (ES) algorithm. This algorithm fits voltage waveforms by tuning the internal parameters of an estimation model and comparing the voltage output with the real battery. The goal is to estimate the electrical parameters of the battery model and to be able to obtain them even as batteries age, when the model behaves different than the cell. To this end, a simple battery model capable of capturing degradation and different tests have been proposed to replicate real application scenarios, and the performance of the ES algorithm in such scenarios has been measured. The results are positive, obtaining converging estimations both with new and aged batteries, with accurate outputs for the intended purpose.


2021 ◽  
Author(s):  
Ivan Lopez-Granados ◽  
Jose M. Sosa ◽  
Gerardo Vazquez ◽  
Adolfo R. Lopez ◽  
Diego Langarica

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7212
Author(s):  
Józef Pszczółkowski

In this paper, the operating principles of the acid battery and its features are discussed. The results of voltage tests containing the measurements conducted at the terminals of a loaded battery under constant load conditions, and dependent on time, are presented. The article depicts the principles of the development of electric models of acid batteries and their various descriptions. The principles for processing the results for the purpose of the determination and description of the battery model are characterized. The characteristics under stationary and non-stationary conditions are specified using glued functions and linear combinations of exponential functions, and the electrical parameters of the battery are determined as the components of the circuit, i.e., its electromotive force, resistance, and capacity. The dynamic characteristic of the battery in the form of transmittance was determined, using the Laplace transform. Possible uses of the crankshaft driving signals as diagnostic signals of the battery, electric starter, and internal combustion engine are also indicated.


2021 ◽  
Vol 2095 (1) ◽  
pp. 012004
Author(s):  
Weibo Chen ◽  
Huijuan Ying

Abstract The state of charge (SOC) and state of health (SOH) are essential indicators for estimating the performance of lithium-ion batteries. In most of the existing methods to estimate SOC and SOH through step-by-step calculation may bring obstacles to real-time prediction of battery performance. To adapt the complex and dynamic situation of the batteries and estimate SOC and SOH in an accurate and fast manner, a novel multi-time scale joint online estimation method is proposed. In order to quickly identify the battery model and estimate the battery state, SOC and SOH are evaluated on a multi time scale framework based on extended Kalman filter (EKF). To improve the accuracy of the equivalent circuit model (ECM), a variable forgetting factor recursive least square (VFFRLS) method is introduced to identify the internal parameters in the battery model. A fuzzy variable time scale EKF (FVEKF) is proposed to estimate SOC and SOH online, where the fuzzy inference engine change the time scale to increase the convergence speed especially in complex stress conditions. Database from the University of Maryland is adopted to testify the effectiveness and efficiency of the algorithm. The results demonstrate that the method has better estimation accuracy and efficiency comparing to traditional joint estimation method, and meet the requirements of real-time estimation.


Sign in / Sign up

Export Citation Format

Share Document