Understanding Hydrogen Atom and Hydride Transfer Processes during Electrochemical Alcohol and Aldehyde Oxidation

ACS Catalysis ◽  
2021 ◽  
pp. 15110-15124
Author(s):  
Michael T. Bender ◽  
Robert E. Warburton ◽  
Sharon Hammes-Schiffer ◽  
Kyoung-Shin Choi
2019 ◽  
Author(s):  
Melanie Short ◽  
Mina Shehata ◽  
Matthew Sanders ◽  
Jennifer Roizen

Sulfamides guide intermolecular chlorine transfer to gamma-C(sp<sup>3</sup>) centers. This unusual position-selectivity arises because accessed sulfamidyl radical intermediates engage in otherwise rare 1,6-hydrogen-atom transfer processes. The disclosed chlorine-transfer reaction relies on a light-initiated radical chain-propagation mechanism to oxidize C(sp<sup>3</sup>)-H bonds.


2019 ◽  
Author(s):  
Melanie Short ◽  
Mina Shehata ◽  
Matthew Sanders ◽  
Jennifer Roizen

Sulfamides guide intermolecular chlorine transfer to gamma-C(sp<sup>3</sup>) centers. This unusual position-selectivity arises because accessed sulfamidyl radical intermediates engage in otherwise rare 1,6-hydrogen-atom transfer processes. The disclosed chlorine-transfer reaction relies on a light-initiated radical chain-propagation mechanism to oxidize C(sp<sup>3</sup>)-H bonds.


1986 ◽  
Vol 240 (3) ◽  
pp. 897-903 ◽  
Author(s):  
L G Forni ◽  
R L Willson

Absolute rate constants for the reaction of NADH with thiyl free radicals derived from various sulphur-containing compounds of biological significance were measured by using the technique of pulse radiolysis. These and related reactions with phenoxyl free radicals are believed to occur through one-electron-transfer processes. Further evidence comes from studies with deuterated NADH. The results support the possibility that, in biochemical systems, thiols may act as catalysts linking hydrogen-atom and electron-transfer reactions.


2015 ◽  
Vol 6 (11) ◽  
pp. 6250-6255 ◽  
Author(s):  
Xiaoshen Ma ◽  
Seth B. Herzon

It is shown that the reduction of alkenes by hydrogen atom transfer provides selectivities that are distinct from classical hydrogenation catalysts. The first alkene hydrobromination, hydroiodination, and hydroselenylation reactions that proceed by hydrogen atom transfer processes are also reported.


2021 ◽  
Author(s):  
Tarali Devi ◽  
Yong-Min Lee ◽  
Shunichi Fukuzumi ◽  
Wonwoo Nam

Acid-promoted hydride transfer from an NADH analogue to a Cr(iii)–superoxo complex in the presence of acid proceeds via the full formation of the NADH analogue radical cation, followed by the decay of the radical, and accompanied then by the formation of NAD+.


Tetrahedron ◽  
1968 ◽  
Vol 24 (14) ◽  
pp. 4941-4946 ◽  
Author(s):  
W.Th.A.M. van der Lugt ◽  
H.M. Buck ◽  
L.J. Oosterhoff

Sign in / Sign up

Export Citation Format

Share Document