scholarly journals Influence of Hydrotropes on the Solubilities and Diffusivities of Redox-Active Organic Compounds for Aqueous Flow Batteries

ACS Omega ◽  
2021 ◽  
Author(s):  
Yingchi Cheng ◽  
Derek M. Hall ◽  
Jonathan Boualavong ◽  
Robert J. Hickey ◽  
Serguei N. Lvov ◽  
...  
2015 ◽  
Vol 3 (29) ◽  
pp. 14971-14976 ◽  
Author(s):  
Jinhua Huang ◽  
Liang Su ◽  
Jeffrey A. Kowalski ◽  
John L. Barton ◽  
Magali Ferrandon ◽  
...  

The development of new high capacity redox active materials is key to realizing the potential of non-aqueous redox flow batteries (RFBs).


2020 ◽  
Vol 5 (3) ◽  
pp. 879-884 ◽  
Author(s):  
Fikile R. Brushett ◽  
Michael J. Aziz ◽  
Kara E. Rodby

2015 ◽  
Vol 6 (2) ◽  
pp. 885-893 ◽  
Author(s):  
Süleyman Er ◽  
Changwon Suh ◽  
Michael P. Marshak ◽  
Alán Aspuru-Guzik

We demonstrate a successful high-throughput screening approach for the discovery of inexpensive, redox-active quinone molecules for organic-based aqueous flow batteries.


2019 ◽  
Vol 7 (20) ◽  
pp. 12833-12841 ◽  
Author(s):  
Daniel P. Tabor ◽  
Rafael Gómez-Bombarelli ◽  
Liuchuan Tong ◽  
Roy G. Gordon ◽  
Michael J. Aziz ◽  
...  

The stability limits of quinones, molecules that show promise as redox-active electrolytes in aqueous flow batteries, are explored for a range of backbone and substituent combinations with high-throughput virtual screening.


2019 ◽  
Author(s):  
Mariano Sánchez-Castellanos ◽  
Martha M. Flores-Leonar ◽  
Zaahel Mata-Pinzón ◽  
Humberto G. Laguna ◽  
Karl García-Ruiz ◽  
...  

Compounds from the 2,2’-bipyridine molecular family were investigated for use as redox-active materials in organic flow batteries. For 156 2,2’-bipyridine derivatives reported in the academic literature, we calculated the redox potential, the pKa for the first protonation reaction, and the solubility in aqueous solutions. Using experimental data on a small subset of derivatives, we were able to calibrate our calculations. We find that functionalization with electron-withdrawing groups leads to an increase of the redox potential and to an increase of the molecular acidity (as expressed in a reduction of the pKa value for the first protonation step). Furthermore, calculations of solubility in water indicate that some of the studied derivatives have adequate solubility for flow battery applications. Based on an analysis of the physico-chemical properties of the 156 studied compounds, we down-select five molecules with carbonyl- and nitro-based functional groups, whose parameters are especially promising for potential application as negative redox-active material inorganic flow batteries.


2019 ◽  
Author(s):  
Mariano Sánchez-Castellanos ◽  
Martha M. Flores-Leonar ◽  
Zaahel Mata-Pinzón ◽  
Humberto G. Laguna ◽  
Karl García-Ruiz ◽  
...  

Compounds from the 2,2’-bipyridine molecular family were investigated for use as redox-active materials in organic flow batteries. For 156 2,2’-bipyridine derivatives reported in the academic literature, we calculated the redox potential, the pKa for the first protonation reaction, and the solubility in aqueous solutions. Using experimental data on a small subset of derivatives, we were able to calibrate our calculations. We find that functionalization with electron-withdrawing groups leads to an increase of the redox potential and to an increase of the molecular acidity (as expressed in a reduction of the pKa value for the first protonation step). Furthermore, calculations of solubility in water indicate that some of the studied derivatives have adequate solubility for flow battery applications. Based on an analysis of the physico-chemical properties of the 156 studied compounds, we down-select five molecules with carbonyl- and nitro-based functional groups, whose parameters are especially promising for potential application as negative redox-active material inorganic flow batteries.


Sign in / Sign up

Export Citation Format

Share Document