scholarly journals Thermophilic Talaromyces emersonii Flavin Adenine Dinucleotide-Dependent Glucose Dehydrogenase Bioanode for Biosensor and Biofuel Cell Applications

ACS Omega ◽  
2017 ◽  
Vol 2 (4) ◽  
pp. 1660-1665 ◽  
Author(s):  
Hisanori Iwasa ◽  
Atsunori Hiratsuka ◽  
Kenji Yokoyama ◽  
Hirotaka Uzawa ◽  
Kouhei Orihara ◽  
...  
Author(s):  
Yuchen Hui ◽  
Xiaoyan Ma ◽  
Rong Cai ◽  
Shelley D. Minteer

Abstract A stable three-dimensional glucose/oxygen enzymatic biofuel cell is fabricated based on the method of polymer encapsulation-based immobilization. And three-dimensional carbon felt is used as the substrate of the bio-electrode for increasing enzymatic loading density. Gold nanoparticles and multi-wall carbon nanotubes are employed to promote direct electron transfer and enhance conductivity and electron conduction rate of bio-electrodes. Glucose dehydrogenase and bilirubin oxidase are immobilized with tetrabutylammonium bromide (TBAB) modified Nafion, which enhances the stability of the bio-electrodes by the immobilization method. A membrane-free glucose/oxygen biofuel cell is assembled with a high open-circuit voltage of 0.85 V and a maximum power density of 21.9 ± 0.1 μW/cm2 in 0.1 M pH 7.0 phosphate buffer solution with 100 mM glucose and air saturation. And the biofuel cell shows high stability to the condition. After 60 days of periodic storage experiments, the performance of the enzymatic biofuel cell still maintained 90.3% of its electrochemical performance.


2019 ◽  
Vol 19 (6) ◽  
pp. 3551-3557 ◽  
Author(s):  
Hiroaki Sakamoto ◽  
Ayako Koto ◽  
Ei-Ichiro Takamura ◽  
Hitoshi Asakawa ◽  
Takeshi Fukuma ◽  
...  

For increasing the output of biofuel cells, increasing the cooperation between enzyme reaction and electron transfer on the electrode surface is essential. Highly oriented immobilization of enzymes onto a carbon nanotube (CNT) with a large specific surface area and excellent conductivity would increase the potential for their application as biosensors and biofuel cells, by utilizing the electron transfer between the electrode-molecular layer. In this study, we prepared a CNT-enzyme complex with highly oriented immobilization of enzyme onto the CNT surface. The complex showed excellent electrical characteristics, and could be used to develop biodevices that enable efficient electron transfer. Multi-walled carbon nanotubes (MWCNT) were dispersed by pyrene butyric acid N-hydroxysuccinimide ester, and then N-(5-amino-1-carboxypentyl) iminodiacetic acid (AB-NTA) and NiCl2 were added to modify the NTA-Ni2+ complex on the CNT surface. Pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase (GDH) was immobilized on the CNT surface through a genetically introduced His-tag. Formation of the MWCNT-enzyme complex was confirmed by monitoring the catalytic current electrochemically to indicate the enzymatic activity. PQQ-GDH was also immobilized onto a highly ordered pyrolytic graphite surface using a similar process, and the enzyme monolayer was visualized by atomic force microscopy to confirm its structural properties. A biofuel cell was constructed using the prepared CNT-enzyme complex and output evaluation was carried out. As a result, an output of 32 μW/cm2 could be obtained without mediators.


2011 ◽  
Vol 84 (1) ◽  
pp. 334-341 ◽  
Author(s):  
Muhammad Nadeem Zafar ◽  
Xiaoju Wang ◽  
Christoph Sygmund ◽  
Roland Ludwig ◽  
Dónal Leech ◽  
...  

2019 ◽  
Vol 6 (20) ◽  
pp. 5242-5247 ◽  
Author(s):  
Pierre‐Yves Blanchard ◽  
Paulo Henrique M. Buzzetti ◽  
Bridget Davies ◽  
Yannig Nedellec ◽  
Emerson Marcelo Girotto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document