Porous Perovskite-Type Lanthanum Cobaltite as Electrocatalysts toward Oxygen Evolution Reaction

2017 ◽  
Vol 5 (11) ◽  
pp. 10910-10917 ◽  
Author(s):  
Jaemin Kim ◽  
Xuxia Chen ◽  
Pei-Chieh Shih ◽  
Hong Yang
NANO ◽  
2020 ◽  
Vol 15 (06) ◽  
pp. 2050077
Author(s):  
Bingxue Hou ◽  
Cheng Cheng Wang ◽  
Rui Tang ◽  
Qi Zhang ◽  
Zanxiong Tan ◽  
...  

Water electrolysis is of vital importance to store renewable energy and the development of efficient, inexpensive and stable electrocatalysts for oxygen evolution reaction (OER) is essential, which requires much more understanding of the structural and the element classification. Here, a series of [Formula: see text]Fex[Formula: see text][Formula: see text] perovskites have been assessed as potential noble-metal-free OER electrocatalysts prepared by sol–gel method. Moreover, the functional role of Cu and Fe amount on the B-site of perovskites for OER electrocatalytic performance was evaluated. [Formula: see text][Formula: see text][Formula: see text] materials exhibited the highest intrinsic activities in 0.1[Formula: see text]M KOH for OER with an onset potential of 1.56[Formula: see text]V, a Tafel slope of 76[Formula: see text]mV[Formula: see text][Formula: see text], slightly lower than that of benchmark perovskite-type electrocatalyst [Formula: see text][Formula: see text]C[Formula: see text][Formula: see text]O3 (BSCF). The above results demonstrate that Cu element in the B-site of perovskites had little effect on the OER performance, and [Formula: see text][Formula: see text][Formula: see text] is a potential alternative electrocatalyst for OER application.


2019 ◽  
Vol 55 (63) ◽  
pp. 9347-9350 ◽  
Author(s):  
Lei Zhong ◽  
Yufei Bao ◽  
Xu Yu ◽  
Ligang Feng

An Fe doped NiTe bulk crystal was demonstrated to exhibit an extremely active and stable performance for the electrochemical oxygen evolution reaction.


Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 695 ◽  
Author(s):  
Mengjie Zhang ◽  
Wenchang Zhu ◽  
Xingzhe Yang ◽  
Meng Feng ◽  
Hongbin Feng

Few-layer exfoliated black phosphorus (Ex-BP) has attracted tremendous attention owing to its promising applications, including in electrocatalysis. However, it remains a challenge to directly use few-layer Ex-BP as oxygen-involved electrocatalyst because it is quite difficult to restrain structural degradation caused by spontaneous oxidation and keep it stable. Here, a robust carbon-stabilization strategy has been implemented to prepare carbon-coated Ex-BP/N-doped graphene nanosheet (Ex-BP/NGS@C) nanostructures at room temperature, which exhibit superior oxygen evolution reaction (OER) activity under alkaline conditions. Specifically, the as-synthesized Ex-BP/NGS@C hybrid presents a low overpotential of 257 mV at a current density of 10 mA cm−2 with a small Tafel slope of 52 mV dec−1 and shows high durability after long-term testing.


Small Science ◽  
2021 ◽  
pp. 2100011
Author(s):  
Zongkui Kou ◽  
Xin Li ◽  
Lei Zhang ◽  
Wenjie Zang ◽  
Xiaorui Gao ◽  
...  

2021 ◽  
Author(s):  
Ning Liu ◽  
Qiaoqiao Zhang ◽  
Jingqi Guan

Seeking for low-cost and high-performance electrocatalysts for oxygen evolution reaction (OER) has drawn enormous research interest in the last few years. Reported herein is the topotactic construction of a binuclear...


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Daire Tyndall ◽  
Sonia Jaskaniec ◽  
Brian Shortall ◽  
Ahin Roy ◽  
Lee Gannon ◽  
...  

AbstractNickel–iron-layered double hydroxide (NiFe LDH) platelets with high morphological regularity and submicrometre lateral dimensions were synthesized using a homogeneous precipitation technique for highly efficient catalysis of the oxygen evolution reaction (OER). Considering edge sites are the point of activity, efforts were made to control platelet size within the synthesized dispersions. The goal is to controllably isolate and characterize size-reduced NiFe LDH particles. Synthetic approaches for size control of NiFe LDH platelets have not been transferable based on published work with other LDH materials and for that reason, we instead use postsynthetic treatment techniques to improve edge-site density. In the end, size-reduced NiFe LDH/single-wall carbon nanotube (SWCNT) composites allowed to further reduce the OER overpotential to 237 ± 7 mV (<L> = 0.16 ± 0.01 μm, 20 wt% SWCNT), which is one of the best values reported to date. This approach as well improved the long-term activity of the catalyst in operating conditions.


Sign in / Sign up

Export Citation Format

Share Document