Overproduction of Fatty Acid Ethyl Esters by the Oleaginous Yeast Yarrowia lipolytica through Metabolic Engineering and Process Optimization

2018 ◽  
Vol 7 (5) ◽  
pp. 1371-1380 ◽  
Author(s):  
Qi Gao ◽  
Xuan Cao ◽  
Yu-Ying Huang ◽  
Jing-Lin Yang ◽  
Jun Chen ◽  
...  
2013 ◽  
Vol 98 (1) ◽  
pp. 251-262 ◽  
Author(s):  
A. Beopoulos ◽  
J. Verbeke ◽  
F. Bordes ◽  
M. Guicherd ◽  
M. Bressy ◽  
...  

2020 ◽  
Vol 129 (1) ◽  
pp. 31-40 ◽  
Author(s):  
Tee-Kheang Ng ◽  
Ai-Qun Yu ◽  
Hua Ling ◽  
Nina Kurniasih Pratomo Juwono ◽  
Won Jae Choi ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yang Zhang ◽  
Jie Peng ◽  
Huimin Zhao ◽  
Shuobo Shi

Abstract Background Production of biofuels and green chemicals by microbes is currently of great interest due to the increasingly limited reserves of fossil fuels. Biodiesel, especially fatty acid ethyl esters (FAEEs), is considered as an attractive alternative because of its similarity with petrodiesel and compatibility with existing infrastructures. Cost-efficient bio-production of FAEEs requires a highly lipogenic production host that is suitable for large-scale fermentation. As a non-model oleaginous yeast that can be cultured to an extremely high cell density and accumulate over 70% cell mass as lipids, Rhodotorula toruloides represents an attractive host for FAEEs production. Results We first constructed the FAEE biosynthetic pathways in R. toruloides by introducing various wax ester synthase genes from different sources, and the bifunctional wax ester synthase/acyl-CoA-diacyglycerol acyltransferase (WS/DGAT) gene from Acinetobacter baylyi was successfully expressed, leading to a production of 826 mg/L FAEEs through shake-flask cultivation. We then mutated this bifunctional enzyme to abolish the DGAT activity, and further improved the titer to 1.02 g/L. Finally, to elevate the performance of Δku70-AbWS* in a bioreactor, both batch and fed-batch cultivation strategies were performed. The FAEEs titer, productivity and yield were 4.03 g/L, 69.5 mg/L/h and 57.9 mg/g (mg FAEEs/g glucose) under batch cultivation, and 9.97 g/L, 90.6 mg/L/h, and 86.1 mg/g under fed-batch cultivation. It is worth mentioning that most of the produced FAEEs were secreted out of the cell, which should greatly reduce the cost of downstream processing. Conclusion We achieved the highest FAEEs production in yeast with a final titer of 9.97 g/L and demonstrated that the engineered R. toruloides has the potential to serve as a platform strain for efficient production of fatty acid-derived molecules.


2017 ◽  
Vol 101 (11) ◽  
pp. 4605-4616 ◽  
Author(s):  
Nabila Imatoukene ◽  
Jonathan Verbeke ◽  
Athanasios Beopoulos ◽  
Abdelghani Idrissi Taghki ◽  
Brigitte Thomasset ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document