acinetobacter baylyi
Recently Published Documents


TOTAL DOCUMENTS

176
(FIVE YEARS 50)

H-INDEX

28
(FIVE YEARS 4)

Fine Focus ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 9-24
Author(s):  
James C. Kuldell ◽  
Harshani Luknauth ◽  
Anthony E. Ricigliano ◽  
Nathan W. Rigel

The outer membrane is the defining characteristic of Gram-negative bacteria and is crucial for the maintenance of cellular integrity. Lipoproteins are an essential component of this outer membrane and regulate broad cellular functions ranging from efflux, cellular physiology, antibiotic resistance, and pathogenicity. In the canonical model of lipoprotein biogenesis, lipoprotein precursors are first synthesized in the cytoplasm prior to extensive modifications by the consecutive action of three key enzymes: diacylglyceryl transferase (Lgt), lipoprotein signal peptidase A (LspA), and apolipoprotein N-acyltransferase (Lnt). This enzymatic process modifies lipoprotein precursors for subsequent trafficking by the Lol pathway. The function of these three enzymes were originally thought to be essential, however, in some Gram-negative bacteria, namely Acinetobacter baylyi, the third enzyme Lnt is dispensable. Here we review the function and significance of Lgt, LspA, and Lnt in outer membrane biogenesis and how non-canonical models of lipoprotein processing in Acinetobacter spp. can enhance our understanding of lipoprotein modifications and trafficking.


2021 ◽  
Vol 118 (47) ◽  
pp. e2102780118
Author(s):  
Jennifer L. Chlebek ◽  
Rémi Denise ◽  
Lisa Craig ◽  
Ankur B. Dalia

Type IV pili (T4P) are dynamic surface appendages that promote virulence, biofilm formation, horizontal gene transfer, and motility in diverse bacterial species. Pilus dynamic activity is best characterized in T4P that use distinct ATPase motors for pilus extension and retraction. Many T4P systems, however, lack a dedicated retraction motor, and the mechanism underlying this motor-independent retraction remains a mystery. Using the Vibrio cholerae competence pilus as a model system, we identify mutations in the major pilin gene that enhance motor-independent retraction. These mutants likely diminish pilin–pilin interactions within the filament to produce less-stable pili. One mutation adds a bulky residue to α1C, a universally conserved feature of T4P. We found that inserting a bulky residue into α1C of the retraction motor–dependent Acinetobacter baylyi competence T4P enhances motor-independent retraction. Conversely, removing bulky residues from α1C of the retraction motor–independent, V. cholerae toxin-coregulated T4P stabilizes the filament and diminishes pilus retraction. Furthermore, alignment of pilins from the broader type IV filament (T4F) family indicated that retraction motor–independent T4P, gram-positive Com pili, and type II secretion systems generally encode larger residues within α1C oriented toward the pilus core compared to retraction motor–dependent T4P. Together, our data demonstrate that motor-independent retraction relies, in part, on the inherent instability of the pilus filament, which may be a conserved feature of diverse T4Fs. This provides evidence for a long-standing yet previously untested model in which pili retract in the absence of a motor by spontaneous depolymerization.


Author(s):  
Jin Luo ◽  
Emily A. McIntyre ◽  
Stacy R. Bedore ◽  
Ville Santala ◽  
Ellen L. Neidle ◽  
...  

Adaptive laboratory evolution (ALE) is a powerful approach for improving phenotypes of microbial hosts. Evolved strains typically contain numerous mutations that can be revealed by whole-genome sequencing. However, determining the contribution of specific mutations to new phenotypes is typically challenging and laborious. This task is complicated by factors such as the mutation type, the genomic context, and the interplay between different mutations. Here, a novel approach was developed to identify the significance of mutations in strains evolved from Acinetobacter baylyi ADP1. This method, termed Rapid Advantageous Mutation ScrEening and Selection (RAMSES), was used to analyze mutants that emerged from stepwise adaptation to, and consumption of, high levels of ferulate, a common lignin-derived aromatic compound. After whole-genome sequence analysis, RAMSES allowed rapid determination of effective mutations and seamless introduction of the beneficial mutations into the chromosomes of new strains with different genetic backgrounds. This simple approach to reverse-engineering exploits the natural competence and high recombination efficiency of ADP1. Mutated DNA, added directly to growing cells, replaces homologous chromosomal regions to generate transformants that will become enriched if there is selective benefit. Thus, advantageous mutations can be rapidly identified. Here, the growth advantage of transformants under selective pressure revealed key mutations in genes related to aromatic transport, including hcaE , hcaK , and vanK , and a gene, ACIAD0482 , which is associated with lipopolysaccharide synthesis. This study provides insights into enhanced utilization of industrially relevant aromatic substrates and demonstrates the use of A. baylyi ADP1 as a convenient platform for strain development and evolution studies. Importance Microbial conversion of lignin-enriched streams is a promising approach for lignin valorization. However, the lignin-derived aromatic compounds are toxic to cells at relevant concentrations. Although adaptive laboratory evolution (ALE) is a powerful approach to develop more tolerant strains, it is typically laborious to identify the mechanisms underlying phenotypic improvement. We employed Acinetobacter baylyi ADP1, an aromatic compound degrading strain that may be useful for biotechnology. The natural competence and high recombination efficiency of this strain can be exploited for critical applications such as the breakdown of lignin and plastics, abundant polymers composed of aromatic subunits. The natural transformability of this bacterium enabled us to develop a novel approach for rapid screening of advantageous mutations from ALE-derived aromatic-tolerant ADP1-derived strains. We clarified the mechanisms and genetic targets for improved tolerance towards common lignin-derived aromatic compounds. This study facilitates metabolic engineering for lignin valorization.


Extremophiles ◽  
2021 ◽  
Author(s):  
Beate Averhoff ◽  
Lennart Kirchner ◽  
Katharina Pfefferle ◽  
Deniz Yaman

AbstractExtremophilic prokaryotes live under harsh environmental conditions which require far-reaching cellular adaptations. The acquisition of novel genetic information via natural transformation plays an important role in bacterial adaptation. This mode of DNA transfer permits the transfer of genetic information between microorganisms of distant evolutionary lineages and even between members of different domains. This phenomenon, known as horizontal gene transfer (HGT), significantly contributes to genome plasticity over evolutionary history and is a driving force for the spread of fitness-enhancing functions including virulence genes and antibiotic resistances. In particular, HGT has played an important role for adaptation of bacteria to extreme environments. Here, we present a survey of the natural transformation systems in bacteria that live under extreme conditions: the thermophile Thermus thermophilus and two desiccation-resistant members of the genus Acinetobacter such as Acinetobacter baylyi and Acinetobacter baumannii. The latter is an opportunistic pathogen and has become a world-wide threat in health-care institutions. We highlight conserved and unique features of the DNA transporter in Thermus and Acinetobacter and present tentative models of both systems. The structure and function of both DNA transporter are described and the mechanism of DNA uptake is discussed.


2021 ◽  
Author(s):  
Robert M. Cooper ◽  
Jeff Hasty

SummaryCRISPR-Cas systems present an evolutionary tradeoff: does defense against phages and other parasitic DNA also prevent cells from acquiring potentially helpful new genes? Genomic analyses of this conundrum have arrived at often contradictory conclusions. Meanwhile, experimental studies have focused mainly on phages, conjugation, or artificial transformation, but less work has examined natural competence, a major driver of evolution and antibiotic resistance. Here, we use Acinetobacter baylyi, which combines high natural competence with a functional CRISPR-Cas system, to experimentally probe the interactions between CRISPR-Cas and natural competence. In these bacteria, the endogenous CRISPR array largely allows natural transformation by targeted DNA. However, CRISPR-Cas then kills the newly autoimmune cells in a form of programmed cell death. CRISPR-Cas often allows self-targeting cells to form colonies, albeit with fitness costs. Thus CRISPR-Cas appears to block natural transformation in a process more akin to altruistic group defense than an individual immune system.


2021 ◽  
Author(s):  
Robert M Cooper ◽  
Josephine A Wright ◽  
Jia Q Ng ◽  
Jarrad M Goyne ◽  
Nobumi Suzuki ◽  
...  

In vitro nucleic acid analysis has become a valuable diagnostic tool. However, in vitro measurements have many disadvantages when compared to in vivo techniques. Synthetic bacterial biosensors have been engineered to sense many target signals in vivo, but no biosensor exists to detect specific DNA sequences. Here, we engineered naturally competent Acinetobacter baylyi bacteria to detect engineered donor DNA inserted into the genomes of colorectal cancer (CRC) cells and organoids. The DNA biosensor concept was developed in vitro and then validated in vivo with sensor bacteria delivered orally or rectally to mice that had been injected with orthotopic donor CRC organoids. Horizontal gene transfer occurred from the donor tumor to the sensor bacteria in vivo, conferring antibiotic resistance to the sensor bacteria and allowing their detection in stool. The sensor bacteria differentiated mice with and without CRC. Life detecting life has many implications for future diagnosis, prevention, and treatment of disease. This approach may also be useful in any application that requires the detection of mutations or organisms within environments that are difficult to sample.


2021 ◽  
Author(s):  
Jin Luo ◽  
Emily A. McIntyre ◽  
Stacy R. Bedore ◽  
Ville Santala ◽  
Ellen L. Neidle ◽  
...  

AbstractAdaptive laboratory evolution (ALE) is a powerful approach for improving phenotypes of microbial hosts. Evolved strains typically contain numerous mutations that can be revealed by whole-genome sequencing. However, determining the contribution of specific mutations to new phenotypes is typically challenging and laborious. This task is complicated by factors such as the mutation type, the genomic context, and the interplay between different mutations. Here, a novel approach was developed to identify the significance of mutations in strains derived from Acinetobacter baylyi ADP1. This method, termed Rapid Advantageous Mutation ScrEening and Selection (RAMSES), was used to analyze mutants that emerged from stepwise adaptation to, and consumption of, high levels of ferulate, a common lignin-derived aromatic compound. After whole-genome sequence analysis, RAMSES allowed both rapid determination of effective mutations and seamless introduction of the beneficial mutations into the chromosomes of new strains with different genetic backgrounds. This simple approach to reverse-engineering exploits the natural competence and high recombination efficiency of ADP1. The growth advantage of transformants under selective pressure revealed key mutations in genes related to aromatic transport, including hcaE, hcaK, and vanK, and a gene, ACIAD0482, which is associated with lipopolysaccharide synthesis. This study provides insights into enhanced utilization of industrially relevant aromatic substrates and demonstrates the use of A. baylyi ADP1 as a convenient platform for strain development and evolution studies.ImportanceMicrobial conversion of lignin-enriched streams is a promising approach for lignin valorization. However, the lignin-derived aromatic compounds are toxic to cells at relevant concentrations. Adaptive laboratory evolution is a powerful approach to develop more tolerant strains, but revealing the underlying mechanisms behind phenotypic improvement typically involves laborious processes. We employed Acinetobacter baylyi ADP1, an aromatic compound degrading strain that may be useful for biotechnology. The natural competence and high recombination efficiency of strain ADP1 can be exploited for critical applications such as the breakdown of lignin and plastics, abundant polymers composed of aromatic subunits. The natural transformability of this bacterium enabled us to develop a novel approach that allows rapid screening of advantageous mutations from ALE-derived aromatic-tolerant ADP1 strains. We clarified the mechanisms and genetic targets for improved tolerance towards common lignin-derived aromatic compounds. This study facilitates metabolic engineering for lignin valorization.


2021 ◽  
Author(s):  
Zhigang Yu ◽  
Yue Wang ◽  
Ian R. Henderson ◽  
Jianhua Guo

AbstractAntimicrobial resistance has emerged as a global threat to human health. Natural transformation is an important pathway for horizontal gene transfer, which facilitates the dissemination of antibiotic resistance genes (ARGs) among bacteria. Although it is suspected that artificial sweeteners could exert antimicrobial effects, little is known whether artificial sweeteners would also affect horizontal transfer of ARGs via transformation. Here we demonstrate that four commonly used artificial sweeteners (saccharin, sucralose, aspartame, and acesulfame potassium) promote transfer of ARGs via natural transformation in Acinetobacter baylyi ADP1, a model organism for studying competence and transformation. Such phenomenon was also found in a Gram-positive human pathogen Bacillus subtilis and mice faecal microbiome. We reveal that exposure to these sweeteners increases cell envelope permeability and results in an upregulation of genes encoding DNA uptake and translocation (Com) machinery. In addition, we find that artificial sweeteners induce an increase in plasmid persistence in transformants. We propose a mathematical model established to predict the long-term effects on transformation dynamics under exposure to these sweeteners. Collectively, our findings offer insights into natural transformation promoted by artificial sweeteners and highlight the need to evaluate these environmental contaminants for their antibiotic-like side effects.


Author(s):  
Xingchun Li ◽  
Wei He ◽  
Meijin Du ◽  
Jin Zheng ◽  
Xianyuan Du ◽  
...  

This paper analyzed the degradation pathways of petroleum hydrocarbon degradation bacteria, screened the main degradation pathways, and found the petroleum hydrocarbon degradation enzymes corresponding to each step of the degradation pathway. Through the Copeland method, the best inoculation program of petroleum hydrocarbon degradation bacteria in a polluted site was selected as follows: single oxygenation path was dominated by Streptomyces avermitilis, hydroxylation path was dominated by Methylosinus trichosporium OB3b, secondary oxygenation path was dominated by Pseudomonas aeruginosa, secondary hydroxylation path was dominated by Methylococcus capsulatus, double oxygenation path was dominated by Acinetobacter baylyi ADP1, hydrolysis path was dominated by Rhodococcus erythropolis, and CoA path was dominated by Geobacter metallireducens GS-15 to repair petroleum hydrocarbon contaminated sites. The Copeland method score for this solution is 22, which is the highest among the 375 solutions designed in this paper, indicating that it has the best degradation effect. Meanwhile, we verified its effect by the Cdocker method, and the Cdocker energy of this solution is −285.811 kcal/mol, which has the highest absolute value. Among the inoculation programs of the top 13 petroleum hydrocarbon degradation bacteria, the effect of the best inoculation program of petroleum hydrocarbon degradation bacteria was 18% higher than that of the 13th group, verifying that this solution has the best overall degradation effect. The inoculation program of petroleum hydrocarbon degradation bacteria designed in this paper considered the main pathways of petroleum hydrocarbon pollutant degradation, especially highlighting the degradability of petroleum hydrocarbon intermediate degradation products, and enriching the theoretical program of microbial remediation of petroleum hydrocarbon contaminated sites.


2021 ◽  
Author(s):  
Ramita Khanongnuch ◽  
Rahul Mangayil ◽  
Ville Santala ◽  
Anne Grethe Hestnes ◽  
Mette Marianne Svenning ◽  
...  

Methane (CH4) is a sustainable carbon feedstock source for aerobic CH4-oxidizing bacteria (methanotrophs) to produce value-added chemicals. Under O2-limiting conditions, CH4 oxidation results in the production of various short-chain organic acids and platform chemicals. However, these CH4-derived products are still limited to C2-C6 and could be extended by utilizing them as a feedstock for heterotrophic bacteria. A two-stage system for CH4 abatement and 1-alkene production was developed in this study. Gamma- and alphaproteobacterial methanotrophs, i.e. Methylobacter tundripaludum SV96 and Methylocystis rosea SV97, respectively, were investigated in batch tests under different gas supplementation schemes. Under O2 limiting conditions (O2/CH4 molar ratio ~0.3), M. tundripaludum SV96 could potentially produce formate, acetate, succinate, and malate, accounted for ~7.4% of mol-CH4 consumed. For the first time, the organic acids-rich spent media derived from O2 limited-methanotrophic cultivation were successfully used for 1-alkene production using engineered Acinetobacter baylyi ADP1 (′tesA-undA) cells.


Sign in / Sign up

Export Citation Format

Share Document