Interaction of Sulfaphenazole Derivatives with Human Liver Cytochromes P450 2C:  Molecular Origin of the Specific Inhibitory Effects of Sulfaphenazole on CYP 2C9 and Consequences for the Substrate Binding Site Topology of CYP 2C9

Biochemistry ◽  
1996 ◽  
Vol 35 (50) ◽  
pp. 16205-16212 ◽  
Author(s):  
Annah Mancy ◽  
Sylvie Dijols ◽  
Sonia Poli ◽  
F. Peter Guengerich ◽  
Daniel Mansuy
Biochemistry ◽  
1995 ◽  
Vol 34 (33) ◽  
pp. 10365-10375 ◽  
Author(s):  
Annah Mancy ◽  
Pierre Broto ◽  
Sylvie Dijols ◽  
Patrick M. Dansette ◽  
Daniel Mansuy

Biochemistry ◽  
1997 ◽  
Vol 36 (42) ◽  
pp. 12672-12682 ◽  
Author(s):  
Sonia Poli-Scaife ◽  
Roger Attias ◽  
Patrick M. Dansette ◽  
Daniel Mansuy

2020 ◽  
Vol 21 (2) ◽  
pp. 117-130 ◽  
Author(s):  
Mohammad J. Hosen ◽  
Mahmudul Hasan ◽  
Sourav Chakraborty ◽  
Ruhshan A. Abir ◽  
Abdullah Zubaer ◽  
...  

Objectives: The Arterial Tortuosity Syndrome (ATS) is an autosomal recessive connective tissue disorder, mainly characterized by tortuosity and stenosis of the arteries with a propensity towards aneurysm formation and dissection. It is caused by mutations in the SLC2A10 gene that encodes the facilitative glucose transporter GLUT10. The molecules transported by and interacting with GLUT10 have still not been unambiguously identified. Hence, the study attempts to identify both the substrate binding site of GLUT10 and the molecules interacting with this site. Methods: As High-resolution X-ray crystallographic structure of GLUT10 was not available, 3D homology model of GLUT10 in open conformation was constructed. Further, molecular docking and bioinformatics investigation were employed. Results and Discussion: Blind docking of nine reported potential in vitro substrates with this 3D homology model revealed that substrate binding site is possibly made with PRO531, GLU507, GLU437, TRP432, ALA506, LEU519, LEU505, LEU433, GLN525, GLN510, LYS372, LYS373, SER520, SER124, SER533, SER504, SER436 amino acid residues. Virtual screening of all metabolites from the Human Serum Metabolome Database and muscle metabolites from Human Metabolite Database (HMDB) against the GLUT10 revealed possible substrates and interacting molecules for GLUT10, which were found to be involved directly or partially in ATS progression or different arterial disorders. Reported mutation screening revealed that a highly emergent point mutation (c. 1309G>A, p. Glu437Lys) is located in the predicted substrate binding site region. Conclusion: Virtual screening expands the possibility to explore more compounds that can interact with GLUT10 and may aid in understanding the mechanisms leading to ATS.


FEBS Letters ◽  
2006 ◽  
Vol 580 (3) ◽  
pp. 912-917 ◽  
Author(s):  
Jiro Arima ◽  
Yoshiko Uesugi ◽  
Misugi Uraji ◽  
Masaki Iwabuchi ◽  
Tadashi Hatanaka

Sign in / Sign up

Export Citation Format

Share Document