Comprehensive in silico Study of GLUT10: Prediction of Possible Substrate Binding Sites and Interacting Molecules

2020 ◽  
Vol 21 (2) ◽  
pp. 117-130 ◽  
Author(s):  
Mohammad J. Hosen ◽  
Mahmudul Hasan ◽  
Sourav Chakraborty ◽  
Ruhshan A. Abir ◽  
Abdullah Zubaer ◽  
...  

Objectives: The Arterial Tortuosity Syndrome (ATS) is an autosomal recessive connective tissue disorder, mainly characterized by tortuosity and stenosis of the arteries with a propensity towards aneurysm formation and dissection. It is caused by mutations in the SLC2A10 gene that encodes the facilitative glucose transporter GLUT10. The molecules transported by and interacting with GLUT10 have still not been unambiguously identified. Hence, the study attempts to identify both the substrate binding site of GLUT10 and the molecules interacting with this site. Methods: As High-resolution X-ray crystallographic structure of GLUT10 was not available, 3D homology model of GLUT10 in open conformation was constructed. Further, molecular docking and bioinformatics investigation were employed. Results and Discussion: Blind docking of nine reported potential in vitro substrates with this 3D homology model revealed that substrate binding site is possibly made with PRO531, GLU507, GLU437, TRP432, ALA506, LEU519, LEU505, LEU433, GLN525, GLN510, LYS372, LYS373, SER520, SER124, SER533, SER504, SER436 amino acid residues. Virtual screening of all metabolites from the Human Serum Metabolome Database and muscle metabolites from Human Metabolite Database (HMDB) against the GLUT10 revealed possible substrates and interacting molecules for GLUT10, which were found to be involved directly or partially in ATS progression or different arterial disorders. Reported mutation screening revealed that a highly emergent point mutation (c. 1309G>A, p. Glu437Lys) is located in the predicted substrate binding site region. Conclusion: Virtual screening expands the possibility to explore more compounds that can interact with GLUT10 and may aid in understanding the mechanisms leading to ATS.

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6863
Author(s):  
Bhargav Shreevatsa ◽  
Chandan Dharmashekara ◽  
Vikas Halasumane Swamy ◽  
Meghana V. Gowda ◽  
Raghu Ram Achar ◽  
...  

NAD(P)H:quinone acceptor oxidoreductase-1 (NQO1) is a ubiquitous flavin adenine dinucleotide-dependent flavoprotein that promotes obligatory two-electron reductions of quinones, quinonimines, nitroaromatics, and azo dyes. NQO1 is a multifunctional antioxidant enzyme whose expression and deletion are linked to reduced and increased oxidative stress susceptibilities. NQO1 acts as both a tumor suppressor and tumor promoter; thus, the inhibition of NQO1 results in less tumor burden. In addition, the high expression of NQO1 is associated with a shorter survival time of cancer patients. Inhibiting NQO1 also enables certain anticancer agents to evade the detoxification process. In this study, a series of phytobioactives were screened based on their chemical classes such as coumarins, flavonoids, and triterpenoids for their action on NQO1. The in silico evaluations were conducted using PyRx virtual screening tools, where the flavone compound, Orientin showed a better binding affinity score of −8.18 when compared with standard inhibitor Dicumarol with favorable ADME properties. An MD simulation study found that the Orientin binding to NQO1 away from the substrate-binding site induces a potential conformational change in the substrate-binding site, thereby inhibiting substrate accessibility towards the FAD-binding domain. Furthermore, with this computational approach we are offering a scope for validation of the new therapeutic components for their in vitro and in vivo efficacy against NQO1.


2019 ◽  
Vol 294 (20) ◽  
pp. 8046-8063 ◽  
Author(s):  
Gergely Gyimesi ◽  
Giuseppe Albano ◽  
Daniel G. Fuster ◽  
Matthias A. Hediger ◽  
Jonai Pujol-Giménez

The transport and ion-coupling mechanisms of ZIP transporters remain largely uncharacterized. Previous work in our laboratory has revealed that the solute carrier family 39 member A2 (SLC39A2/ZIP2) increases its substrate transport rate in the presence of extracellular H+. Here, we used a combination of in silico and in vitro techniques involving structural modeling, mutagenesis, and functional characterization in HEK293 cells to identify amino acid residues potentially relevant for both the ZIP2–H+ interaction and substrate binding. Our ZIP2 models revealed a cluster of charged residues close to the substrate–translocation pore. Interestingly, the H63A substitution completely abrogated pH sensitivity, and substitutions of Glu-67 and Phe-269 altered the pH and voltage modulation of transport. In contrast, substitution of Glu-106, which might be part of a dimerization interface, altered pH but not voltage modulation. Substitution of Phe-269, located close to the substrate-binding site, also affected substrate selectivity. These findings were supported by an additional model of ZIP2 that was based on the structure of a prokaryotic homolog, Bordetella bronchiseptica ZrT/Irt-like protein (bbZIP), and in silico pKa calculations. We also found that residues Glu-179, His-175, His-202, and Glu-276 are directly involved in the coordination of the substrate metal ion. We noted that, unlike bbZIP, human ZIP2 is predicted to harbor a single divalent metal-binding site, with the charged side chain of Lys-203 replacing the second bound ion. Our results provide the first structural evidence for the previously observed pH and voltage modulation of ZIP2-mediated metal transport, identify the substrate-binding site, and suggest a structure-based transport mechanism for the ZIP2 transporter.


2020 ◽  
Vol 21 (14) ◽  
pp. 1470-1478 ◽  
Author(s):  
Jannatul Naima ◽  
Ruhshan A. Abir ◽  
Mohammad J. Hosen

Background: The molecular etiology of Pseudoxanthoma Elasticum (PXE), an autosomal recessive connective tissue disorder, has become increasingly complex as not only mutations in the ABCC6, but also in ENPP1 and GGCX, can cause resembling phenotypes. Methods: To get insights on the common pathway, the overlapping metabolites for these three proteins were predicted through 3D homology modeling and virtual screening. 3D homology models of ABCC6, ENPP1, and GGCX were generated by the MODELLER program, which were further validated using RAMPAGE and ERRAT servers. Substrate binding sites of ABCC6 were predicted using blind docking of reported in vitro substrates. Results: Virtual screening against the substrate binding site of ABCC6 using metabolites listed in Human Metabolome Databases (HMDB) revealed the best possible substrate of ABCC6. Those listed metabolites were further docked against predicted substrate binding sites of GGCX and ENPP1. Molecular docking and virtual screening revealed a list of 133 overlapping metabolites of these three proteins. Most of them are Phosphatidylinositol (PI), Phosphatidylserine (PS), Diacylglycerol (DAG), phosphatidic acid, oleanolic acid metabolites and were found to have links with calcification. Conclusion: These predicted overlapping metabolites may give novel insights for searching common pathomechanism for PXE and PXE-like diseases.


2019 ◽  
Vol 20 (14) ◽  
pp. 1203-1212
Author(s):  
Abdelmonaem Messaoudi ◽  
Manel Zoghlami ◽  
Zarrin Basharat ◽  
Najla Sadfi-Zouaoui

Background & Objective: Pseudomonas aeruginosa shows resistance to a large number of antibiotics, including carbapenems and third generation cephalosporin. According to the World Health Organization global report published in February 2017, Pseudomonas aeruginosa is on the priority list among resistant bacteria, for which new antibiotics are urgently needed. Peptidoglycan serves as a good target for the discovery of novel antimicrobial drugs. Methods: Biosynthesis of peptidoglycan is a multi-step process involving four mur enzymes. Among these enzymes, UDP-N-acetylmuramate-L-alanine ligase (MurC) is considered to be an excellent target for the design of new classes of antimicrobial inhibitors in gram-negative bacteria. Results: In this study, a homology model of Pseudomonas aeruginosa MurC ligase was generated and used for virtual screening of chemical compounds from the ZINC Database. The best screened inhibitor i.e. N, N-dimethyl-2-oxo-2,3-dihydro-1H-1,3-benzodiazole-5-sulfonamide was then validated experimentally through inhibition assay. Conclusion: The presented results based on combined computational and in vitro analysis open up new horizons for the development of novel antimicrobials against this pathogen.


2021 ◽  
Vol 22 (13) ◽  
pp. 6910
Author(s):  
Flora Szeri ◽  
Valentina Corradi ◽  
Fatemeh Niaziorimi ◽  
Sylvia Donnelly ◽  
Gwenaëlle Conseil ◽  
...  

Inactivating mutations in ABCC6 underlie the rare hereditary mineralization disorder pseudoxanthoma elasticum. ABCC6 is an ATP-binding cassette (ABC) integral membrane protein that mediates the release of ATP from hepatocytes into the bloodstream. The released ATP is extracellularly converted into pyrophosphate, a key mineralization inhibitor. Although ABCC6 is firmly linked to cellular ATP release, the molecular details of ABCC6-mediated ATP release remain elusive. Most of the currently available data support the hypothesis that ABCC6 is an ATP-dependent ATP efflux pump, an un-precedented function for an ABC transporter. This hypothesis implies the presence of an ATP-binding site in the substrate-binding cavity of ABCC6. We performed an extensive mutagenesis study using a new homology model based on recently published structures of its close homolog, bovine Abcc1, to characterize the substrate-binding cavity of ABCC6. Leukotriene C4 (LTC4), is a high-affinity substrate of ABCC1. We mutagenized fourteen amino acid residues in the rat ortholog of ABCC6, rAbcc6, that corresponded to the residues in ABCC1 found in the LTC4 binding cavity. Our functional characterization revealed that most of the amino acids in rAbcc6 corresponding to those found in the LTC4 binding pocket in bovine Abcc1 are not critical for ATP efflux. We conclude that the putative ATP binding site in the substrate-binding cavity of ABCC6/rAbcc6 is distinct from the bovine Abcc1 LTC4-binding site.


Sign in / Sign up

Export Citation Format

Share Document