Particle Interactions in Binary Mixtures of Carbon Black and White Solid Acids

Author(s):  
T. J. FABISH
Author(s):  
Santhip Krishnan Kanholy ◽  
Francine Battaglia

The hydrodynamics of fluidized beds involving gas and particle interactions are very complex and must be carefully considered when using computational fluid dynamics (CFD). Modeling particle interactions are even more challenging for binary mixtures composed of varying particle characteristics such as diameter or density. One issue is the presence of dead-zones, regions of particles that do not fluidize and accumulate at the bottom, affecting uniform fluidization. In Eulerian-Eulerian modeling, the solid phase is assumed to behave like a fluid and the presence of dead zones are not typically captured in a simulation. Instead, the entire bed mass present in an experiment is modeled, which assumes full fluidization. The paper will present modeling approaches that account for only the fluidizing mass by adjusting the initial mass present in the bed using pressure drop and minimum fluidization velocity from experiments. In order to demonstrate the fidelity of the new modeling approach, different bed materials are examined. Binary mixture models are also validated for two types of mixtures consisting of glass-ceramic and ceramic-ceramic compositions. It will be shown that adjusting the mass in the modeling of fluidized beds best represents the measured quantities of an experiment for both single-phase and binary mixtures.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1841
Author(s):  
Yi Liu ◽  
Zhaosheng Yu ◽  
Jiecheng Yang ◽  
Carl Wassgren ◽  
Jennifer Sinclair Curtis ◽  
...  

The effects of particle shape differences on binary mixture shear flows are investigated using the Discrete Element Method (DEM). The binary mixtures consist of frictionless rods and disks, which have the same volume but significantly different shapes. In the shear flows, stacking structures of rods and disks are formed. The effects of the composition of the mixture on the stacking are examined. It is found that the number fraction of stacking particles is smaller for the mixtures than for the monodisperse rods and disks. For binary mixtures with small particle shape differences, the mixture stresses are bounded by the stresses of the two corresponding monodisperse systems. However, for binary mixtures with large particle shape differences, the stresses of the mixtures can be larger than the stresses of the monodisperse systems at large solid volume fractions because larger differences in particle shape cause geometrical interference in packing, leading to stronger particle–particle interactions in the flow. The stresses in dense binary mixtures are found to be exponential functions of the order parameter, which is a measure of particle alignment. Based on the simulation results, an empirical expression for the bulk friction coefficient (ratio of the shear stress to normal stress) for dense binary flows is proposed by accounting for the effects of particle alignment and solid volume fraction.


Sign in / Sign up

Export Citation Format

Share Document