Experiences and Knowledge Gained from Vadose Zone Sampling

Author(s):  
J. L. Starr ◽  
J. J. Meisinger ◽  
T. B. Parkin
Keyword(s):  
2009 ◽  
Vol 6 (6) ◽  
pp. 7247-7285 ◽  
Author(s):  
N. P. Peranginangin ◽  
B. K. Richards ◽  
T. S. Steenhuis

Abstract. Accurate soil water sampling is needed for monitoring of pesticide leaching through the vadose zone, especially in soils with significant preferential flowpaths. We assessed the effectiveness of wick and gravity pan lysimeters as well as ceramic cups (installed 45–60 cm deep) in strongly-structured silty clay loam (Hudson series) and weakly-structured fine sandy loam (Arkport series) soils. Simulated rainfall (10–14 cm in 4 d, approximately equal to a 10-yr, 24 h storm) was applied following concurrent application of agronomic rates (0.2 g m−2) of atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) and 2,4-D (2,4-dichloro-phenoxy-acetic acid) immediately following application of a chloride tracer (22–44 g m−2). Preferential flow mechanisms were observed in both soils, with herbicide and tracer mobility greater than would be predicted by uniform flow. Preferential flow was more dominant in the Hudson soil, with earlier breakthroughs observed. Mean wick and gravity pan sampler percolate concentrations at 60 cm depth ranged from 96 to 223 μg L−1 for atrazine and 54 to 78 μg L−1 for 2,4-D at the Hudson site, and from 7 to 22 μg L−1 for atrazine and 0.5 to 2.8 μg L−1 for 2,4-D at the Arkport site. Gravity and wick pan lysimeters had comparably good collection efficiencies at elevated soil moisture levels, whereas wick pan samplers performed better at lower moisture contents. Cup samplers performed poorly with wide variations in collections and solute concentrations.


2013 ◽  
Vol 2 (1) ◽  
pp. 22-26
Author(s):  
Joanna Czekaj ◽  
Kamil Trepka

Abstract Goczałkowice reservoir is one of the main source of drinking water for Upper Silesia Region. In reference to Water Frame Directive matter since 2010 the strategic research project: „Integrated system supporting management and protection of dammed reservoir (ZiZoZap)”, which is being conducted on Goczałkowice reservoir, has been pursued. In the framework of this project complex groundwater monitoring is carried on. One aspect is vadose zone research, conducted to obtain information about changes in chemical composition of infiltrating water and mass transport within this zone. Based on historical data and the structural model of direct catchment of Goczałkowice reservoir location of the vadose zone research site was selected. At the end of November 2012 specially designed lysimeter was installed with 10 MacroRhizon samplers at each lithological variation in unsaturated zone. This lysimeter, together with nested observation wells, located in the direct proximity, create the vadose zone research site which main aim is specifying the amount of nitrate transport in the vertical profile.


2002 ◽  
Vol 1 (1) ◽  
pp. 150 ◽  
Author(s):  
A. T. O'Geen ◽  
P. A. McDaniel ◽  
J. Boll
Keyword(s):  

2004 ◽  
Vol 3 (1) ◽  
pp. 170
Author(s):  
Deborah L. McElroy ◽  
Joel M. Hubbell
Keyword(s):  

2002 ◽  
Vol 1 (1) ◽  
pp. 199
Author(s):  
Jan W. Hopmans

Sign in / Sign up

Export Citation Format

Share Document