vertical profile
Recently Published Documents


TOTAL DOCUMENTS

781
(FIVE YEARS 186)

H-INDEX

48
(FIVE YEARS 4)

2022 ◽  
Vol 962 (1) ◽  
pp. 012040
Author(s):  
V B Venslavsky ◽  
Yu V Kharin

Abstract In January-March, 2020-2021, radiophysical studies were conducted of radiothermal radiation intensity for the testing site for Lake Arakhley, Transbaikalia, Russia. The set of equipment consisting of four microwave radiometers for the wavelengths from 0.3 to 2 cm was placed on the shore of the lake mounted on a stationary platform. The temperature and deformation of ice were simultaneously measured at the depth of 0.4 meters in two orthogonal directions: west-east and north-south. The temperature was measured with heat gauges in a vertical profile at the depths of 5, 10, 15, 20 and 40 cm. In the process of contact measurements in the period of cracking, signal impulses were recorded in the channel of the deformation sensor placed in the direction of the lake center (west-east). The measurement results were used in monitoring of the condition of the water body. It turned out that in the periods of registering the deformation impulses, changes in the radio brightness temperature and decrease in the ice temperature were observed. The microwave characteristics correlate with the temperature and deformation of the ice cover and may serve as an indicator of the meteorological conditions of the region.


MAUSAM ◽  
2021 ◽  
Vol 66 (4) ◽  
pp. 687-694
Author(s):  
S.C. BHAN ◽  
A.K. MITRA ◽  
A.K. SHARMA ◽  
NITESH KAUSHIK ◽  
SHAILESH PARIHAR ◽  
...  

MAUSAM ◽  
2021 ◽  
Vol 64 (4) ◽  
pp. 613-624
Author(s):  
R.P. LAL ◽  
SURESH RAM

Hkkjr ekSle foKku foHkkx }kjk Hkkjrh; bysDVªks&dsfedy vkstksulkSans dh enn ls ,aVkdZfVdk ij Hkkjr ds nwljs LVs'ku eS=h ¼70-7 fMxzh n-] 11-7 fMxzh iw-½ ls vkstksu fLFkfr ¼izksQkby½ dk fu;fer eki fd;k tk jgk gSA ok;qeaMy ds mnxz LraHk esa vkstksu ds ?kuRo dh x.kuk iwjs o"kZ esa fy, x, lkIrkfgd vkstksu lkmfUMax ls dh tkrh gSA ok;qeaMyh; vkstksu dh mnxz fLFkfr ¼izksQkby vkSj vkstksu fNnz ¼gksy½ dh fo'ks"krkvksa dk v/;;u djus ds fy, flracj&vDVwcj ekg ds nkSjku cgqr ckj ifjKfIr;k¡ ¼lkmfUMax½ yh xbZ gSaA bl 'kks/k i= esa lrg ls 10 gsDVk ik- ds chp vkstksu vkSj rkieku ds ekfld ,oa okf"kZd vkSlr esa fofo/krk dh x.kuk ,oa fo'ys"k.k o"kZ 1999 ls 2007 dh vof/k esa fy, vkstksulkSans vkjksg.kksa ls fd;k x;k gSA bl v/;;u ls irk pyk gS fd vkstksu fNnz ds laca/k esa xgu vo{k; vDrwcj esa vkSj vYi ijUrq egRoiw.kZ vo{k; flracj ekg esa gqvk gSA vDrwcj esa yxHkx 250 ,oa 20 gs-ik- ds chp lcls lqLi"V vo{k; gqvk gS ftlesa vf/kdre LFkkuh; vkstksu ds Lrj esa 70 gs-ik- vkSj 10 gs- ik- ds Lrjksa ij vkSj flrEcj esa 70 gs- ik- ij fxjkoV  ns[kh xbZA fHkUu&fHkUu nkc Lrjksa ds fy, vkstksu dk rkieku ds lkFk lglaca/k ls ubZ tkudkfj;ksa vkSj vkstksu ifjorZu esa foLrkj dk irk pyk gSA iwjs o"kZ esa 300 ls 50 gs- ik- ds chp U;wure okf"kZd vkSlr rkieku -55 fMxzh ls -63 fMxzh lsaVhxzsM rd cnyrk gSA vxLr vkSj flrEcj ds eghuksa esa     70 gs- ik- rFkk 100 gs- ik- Lrjksa ij rkieku dk -80 fMxzh lsaVhxzsM ls de gksuk ,oa vDrwcj ekg esa 70 gs- ik- rFkk 100 gs- ik- Lrjksa ij yxHkx -70 fMxzh lsaVhxzsM ls de gksus dh fLFkfr dks vDrwcj ekg esa vkst+ksu vo{k; ds ladsrd ds :i esa ekuk tk ldrk gSA Regular ozone profile measurement over Antarctica has been made by India Meteorological Department over Indian second station Maitri (70.7° S, 11.7° E) with the help of Indian electro-chemical ozonesonde. Ozone density in the vertical column of the atmosphere is computed with weekly ozone soundings taken throughout the year. During the month of September- October more frequent soundings were taken to study vertical profile of atmospheric ozone and features of ozone hole. The mean monthly and yearly variation of ozone and temperature from surface to 10 hPa has been computed and analyzed from the ozonesonde ascents for the period 1999 to 2007. The study has shown profound depletion in October and lesser but substantial depletion in September, in association with the ozone hole. Depletion is most pronounced between about 250 and 20 hPa in October, with maximum local ozone losses near   70 hPa & 100 hPa levels and in September at 70 hPa. Ozone correlations with temperature for several pressure levels have revealed new insights into the causes and extent of ozone change. Lowest annual mean temperature varies from -55 to -63 °C between 300 to 50 hPa in all the year. The temperature less than -80 °C in months of August & September at 70 hPa & 100 hPa levels and about -70 °C in month of October at 70 hPa & 100 hPa levels can be attributed as an indicator of ozone depletion in months of October


Fluids ◽  
2021 ◽  
Vol 6 (12) ◽  
pp. 458
Author(s):  
Susam Boral ◽  
Trilochan Sahoo ◽  
Yury Stepanyants

An interesting physical phenomenon was recently observed when a fresh-water basin is covered by a thin ice film that has properties similar to the property of a rubber membrane. Surface waves can be generated under the action of wind on the air–water interface that contains an ice film. The modulation property of hydro-elastic waves (HEWs) in deep water covered by thin ice film blown by the wind with a uniform vertical profile is studied here in terms of the airflow velocity versus wavenumber. The modulation instability of HEWs is studied through the analysis of coefficients of the nonlinear Schrödinger (NLS) equation with the help of the Lighthill criterion. The NLS equation is derived using the multiple scale method in the presence of airflow. It is demonstrated that the potentially unstable hydro-elastic waves with negative energy appear for relatively small wind speeds, whereas the Kelvin–Helmholtz instability arises when the wind speed becomes fairly strong. Estimates of parameters of modulated waves for the typical conditions are given.


2021 ◽  
pp. 1-7
Author(s):  
Jaromir Petrzala

Abstract Aerosol particles spread in the atmosphere play an important role in solar light scattering and thus co-determine the sky radiance/luminance pattern as well as diffuse irradiances/illuminances at the ground. The particular influence is given by their optical properties and by their distribution in the atmosphere. The dependence of the aerosol extinction coefficient on altitude is usually described by the exponential law, which results from averaging of a large amount of aerosol realizations. This is also frequently the case of simulating of the solar diffuse radiance/luminance distribution over the sky, when it is based on solving the radiative transfer problem. However, the aerosol vertical profile can sometimes be significantly different from the exponential one. Mainly in the urban environment, the aerosol is often well-mixed within the atmospheric boundary layer, so its volume extinction coefficient is almost constant there. This work investigates how such different profiles affect the clear sky radiance pattern and consequently also the ground-based horizontal diffuse irradiance. The numerical simulations reveal that the discrepancies are negligible in practice. So it appears that the aerosol vertical distribution does not play any important role in sky radiance calculations and the standard exponential law is general enough to cover also various specific aerosol conditions.


Sign in / Sign up

Export Citation Format

Share Document