scholarly journals Assessment of vadose zone sampling methods for detection of preferential herbicide transport

2009 ◽  
Vol 6 (6) ◽  
pp. 7247-7285 ◽  
Author(s):  
N. P. Peranginangin ◽  
B. K. Richards ◽  
T. S. Steenhuis

Abstract. Accurate soil water sampling is needed for monitoring of pesticide leaching through the vadose zone, especially in soils with significant preferential flowpaths. We assessed the effectiveness of wick and gravity pan lysimeters as well as ceramic cups (installed 45–60 cm deep) in strongly-structured silty clay loam (Hudson series) and weakly-structured fine sandy loam (Arkport series) soils. Simulated rainfall (10–14 cm in 4 d, approximately equal to a 10-yr, 24 h storm) was applied following concurrent application of agronomic rates (0.2 g m−2) of atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) and 2,4-D (2,4-dichloro-phenoxy-acetic acid) immediately following application of a chloride tracer (22–44 g m−2). Preferential flow mechanisms were observed in both soils, with herbicide and tracer mobility greater than would be predicted by uniform flow. Preferential flow was more dominant in the Hudson soil, with earlier breakthroughs observed. Mean wick and gravity pan sampler percolate concentrations at 60 cm depth ranged from 96 to 223 μg L−1 for atrazine and 54 to 78 μg L−1 for 2,4-D at the Hudson site, and from 7 to 22 μg L−1 for atrazine and 0.5 to 2.8 μg L−1 for 2,4-D at the Arkport site. Gravity and wick pan lysimeters had comparably good collection efficiencies at elevated soil moisture levels, whereas wick pan samplers performed better at lower moisture contents. Cup samplers performed poorly with wide variations in collections and solute concentrations.

2009 ◽  
Vol 6 (5) ◽  
pp. 5631-5664
Author(s):  
M. S. Akhtar ◽  
U. Mohrlok ◽  
D. Stüben

Abstract. While rapid movement of solutes through structured soils constitutes the risk of groundwater contamination, simulation of solute transport in field soils is challenging. A modification in an existing preferential flow model was tested using replicated Chloride and Lithium leachings carried out at constant flow rates through four soils differing in grades and type of structure. Flow rates generated by +10 mm, −10 mm, −40 mm, and −100 mm water heads at the surface of 35 cm diameter 50 cm height field columns. Three well-structured silty clay soils under ponding had concurrent breakthrough of Chloride and Lithium within a few cm of drainage, and a delayed and reduced peak concentration of Lithium with decrease in flow rate controlled by the negative heads. Massive sandy loam soil columns had delayed but uniform breakthrough of the solutes over the flow rates. Macropore flow in well-structured silty clay/clay loam soils reduced retardation, R (1.5 to 4.5) and effective porosity, θe (0.05 to 0.15), and increased macropore velocity, vm (20 to 30 cm cm−1 drainage) compared to the massive sandy soils. The existing simple preferential flow equation (single layer) fitted the data well only when macropore flow was dominant. The modified preferential flow equations (two layers) fitted equally well both for the adsorbing and nonadsorbing solutes. The later had high goodness of fit for a large number of solute breakthroughs, and gave almost identical retardation coefficient R as that calculated by two-domain CDE. With fewer parameters, the modified preferential flow equation after testing on some rigorous model selection criteria may provide a base for future modeling of chemical transport.


2016 ◽  
Author(s):  
Natalia Fernández de Vera ◽  
Jean Beaujean ◽  
Pierre Jamin ◽  
David Caterina ◽  
Marnik Vanclooster ◽  
...  

Abstract. Water flow and solute transport through a fractured vadose zone underneath an industrial contaminated site in Belgium were studied with a new methodological concept. The Vadose Zone Experimental Setup (VZES) combines a vadose zone monitoring system (VMS) with cross-borehole geophysics. The VMS provides continuous chemical and hydraulic information at multiple depths in the vadose zone. When combining such information with multidirectional subsurface imaging from geophysical measurements, flow and transport can be characterized at a scale that covers the spatial variability of the subsurface. The setup was installed on site and monitoring was carried out under natural recharge conditions. Results reveal quick rises in water content as a response to rainfall events in the upper and intermediate part of the vadose zone (down to 3.65 m depth). Macropore, micropore, matrix and preferential flow mechanisms are identified at these depth ranges. At greater depths, flow dynamics is slower and dominated by matrix flow. The governance of water flow mechanisms at different directions is controlled by the heterogeneous distribution of geological materials. Results from sampled waters across the vadose zone reveal that the chemistry of water collected from matrix is different from that collected from fractures. In addition, analysis of heavy metals indicates that Ni is leaching across the vadose zone, and its release might be a consequence of pyrite oxidation from backfilled materials. Results obtained from VZES indicate that the combination of different techniques providing in situ quantitative and qualitative information improves conceptual models of flow and transport in a heterogeneous subsurface.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 128
Author(s):  
Ruihuan She ◽  
Yongxiang Yu ◽  
Chaorong Ge ◽  
Huaiying Yao

Soil salinization typically inhibits the ability of decomposer organisms to utilize soil organic matter, and an increase in soil clay content can mediate the negative effect of salinity on carbon (C) mineralization. However, the interactive effects of soil salt concentrations and properties on C mineralization remain uncertain. In this study, a laboratory experiment was performed to investigate the interactive effects of soil salt content (0.1%, 0.3%, 0.6% and 1.0%) and texture (sandy loam, sandy clay loam and silty clay soil with 6.0%, 23.9% and 40.6% clay content, respectively) on C mineralization and microbial community composition after cotton straw addition. With increasing soil salinity, carbon dioxide (CO2) emissions from the three soils decreased, but the effect of soil salinity on the decomposition of soil organic carbon varied with soil texture. Cumulative CO2 emissions in the coarse-textured (sandy loam and sandy clay loam) soils were more affected by salinity than those in the fine-textured (silty clay) soil. This difference was probably due to the differing responses of labile and resistant organic compounds to salinity across different soil texture. Increased salinity decreased the decomposition of the stable C pool in the coarse-textured soil, by reducing the proportion of fungi to bacteria, whereas it decreased the mineralization of the active C pool in the fine-textured soil through decreasing the Gram-positive bacterial population. Overall, our results suggest that soil texture controlled the negative effect of salinity on C mineralization through regulating the soil microbial community composition.


1988 ◽  
Vol 110 (1) ◽  
pp. 119-140 ◽  
Author(s):  
G. N. Thorne ◽  
P. J. Welbank ◽  
F. V. Widdowson ◽  
A. Penny ◽  
A. D. Todd ◽  
...  

SummaryWinter wheat grown following potatoes on a sandy loam at Woburn in 1978–9, 1980–1 and 1981–2 was compared with that on a clay loam at Rothamsted in 1978–9 and 1980–1, and on a silty clay (alluvium) at Woburn in 1981–2. The cultivar was Hustler in the harvest years 1979 and 1981 and Avalon in 1982. On each soil in each year multifactorial experiments tested effects of combinations of six factors, each at two levels.The best 4-plot mean grain yield ranged from 89 to 11·1 t/ha during the 3 years; it was smaller on the sandy soil than on the clay soil in 1979, but larger on sand than on the clay in 1981 and 1982. Until anthesis the number of shoots, dry weight and N content of the wheat giving these best yields were less on sand than on clay. Unlike grain weight, straw weight was always less on sand.Sowing in mid-September instead of mid-October increased grain yield on clay in each year (by 0·4·0·7 t/ha) and increased yield on sand only in 1981 (by 1·6 t/ha). Early sowing always increased dry weight, leaf area, number of shoots and N uptake until May. The benefits were always greater on clay than on sand immediately before N fertilizer was applied in the spring and usually lessened later on both soils.Aldicarb as an autumn pesticide increased grain yield of early-sown wheat on both soils in 1981 by lessening infection with barley yellow dwarf virus. Aldicarb increased yield on clay in 1982; it also decreased the number of plant parasitic nematodes.Wheat on sand was more responsive to nitrogen in division, timing and amount than was wheat on clay. In 1979 yield of wheat on sand was increased by dividing spring N between March, April and May, instead of giving it all in April, and in 1982 by giving winter N early in February. In 1981 division and timing on sand interacted with sowing date. Yield of early-sown wheat given N late, i.e. in March, April and May, exceeded that given N early, i.e. in February, March and May, by 1·4 t/ha; single dressings given all in March or all in April also yielded less than the late divided dressing. Yield of later-sown wheat given all the N in April was at least 1·2 t/ha less than with all N given in March or with divided N. In all years treatments that increased yield usually also increased N uptake. Grain yield on clay was never affected by division or timing of spring N or by application of winter N. This was despite the fact that all treatments that involved a delay in the application of N depressed growth and N uptake in spring on both sand and clay. The mean advantage in N uptake following early application of spring N eventually reversed on both soils, so that uptake at maturity was greater from late than from early application. Increasing the amount of N given in spring from the estimated requirement for 9 t/ha grain yield to that for 12 t/ha increased yield in 1982, especially on sand. The larger amount of N always increased the number of ears but often decreased the number of grains per ear and the size of individual grains.Irrigation increased grain yield only on the sandy soil, by 1·1 t/ha in 1979 and by 07 t/ha in 1981 and 1982. The component responsible was dry weight per grain in 1979 and 1982, when soil moisture deficits reaching maximum values of 136 and 110 mm respectively in the 2 years developed after anthesis; the component responsible was number of ears/m2 in 1982 when the maximum deficit of 76 mm occurred earlier, in late May.


2021 ◽  
Author(s):  
Torsten Noffz ◽  
Jannes Kordilla ◽  
Alireza Kavousi ◽  
Thomas Reimann ◽  
Martin Sauter ◽  
...  

<p>The locally focused dissolution of the rock material (e.g., below dolines and dry valleys) in karst systems and in general percolating clusters of fractures in consolidated aquifer systems trigger the development of preferential flow paths in the vadose zone. Rainfall events may initiate rapid mass fluxes via macropores and fractures (e.g., as gravitationally-driven films) that lead to source-responsive water table fluctuations and comparably short residence times within the vadose zone. The degree of partitioning into a slow diffuse infiltration component and a rapid localized part depends, amongst others, on the hydraulic interaction of porous matrix and fracture domain as well as the geometrical characteristics of the fracture systems (e.g., persistence, connectivity) that are often difficult to obtain or unknown under most field conditions. Given their importance in water-resource management, specifically in arid and semi-arid regions (e.g., Mediterranean), it is desirable to recover such infiltration dynamics in porous-fractured systems with physically-based yet not overparameterized models. Here, we simulate water table fluctuations in a karst catchment in southwest Germany (Gallusquelle) using a source-responsive film flow model based on borehole and precipitation data. The model takes into account interfacial connectivity between slow and fast domain as well as phreatic zone discharge via classical recession analysis. This case study shows the potential importance of preferential flows while modeling water table responses in karst systems and recognizes the need for formulations other than those applied for a diffuse bulk fractured domain where infiltration patterns are assumed to be homogeneous without formation of infiltration instabilities along preferential pathways.</p>


2021 ◽  
Author(s):  
John Koestel ◽  
Lorenzo Garbari ◽  
Daniel Iseskog

<p>While the basic processes of water infiltration into soil are well understood, their details are difficult to quantify due to the opaque nature of soil. In this study, we investigated the potential and limitations of X-ray radiography to measure the water front progression in a narrow sample (15 × 15 × 1 cm) filled with dry soil under simulated rainfall of high intensity (53 mm/h). The temporal resolution of the acquired infiltration movies was 133 milliseconds. We evaluated three different kinds of soil samples. i) Bare samples filled with a 1:1 mixture of a sandy loam and peat. ii) The same soil-peat mixture, but cropped with <em>Trifolium incarnatum</em>, <em>Trifolium repens</em>, <em>Lathyrus odoratus</em> and <em>Lupinus regalis</em>, all of them plants that have been reported to induce water repellency; prior to the experiments, the plants were harvested and only the roots remained in place. iii) Sandy loam soil that had been incubated for four weeks in an outside garden plot. Due to time limitations of the project, the incubation period was in early spring, which meant that plant growth in the samples was negligible. All three sample types were replicated five times, resulting in 15 individual samples. We carried out the infiltration experiments in four-fold replications, from which it follows that we collected 60 individual infiltration movies. After each infiltration round, the samples were placed in a drying room to reset them to a similar initial moisture content. The experiments aimed at testing i) whether the infiltration patterns of the four consecutive infiltration runs conducted on each sample remained identical and ii) to document differences in infiltration patterns between bare, cropped and incubated samples. We found that increasing X-ray scattering with increasing soil water contents made it challenging to evaluate the image data quantitatively. Advantages of our setup are that X-ray captures the complete water content at a specific depth and that sample boxes with irregularly shaped walls can be used to prevent preferential flow along the walls. Preliminary analyses of the data showed that the infiltration fronts in the bare and the incubated samples were less uniform than the ones for the cropped samples. In contrast, the likelihood of observing the same infiltration pattern in all four consecutive infiltration runs was larger for the bare and the incubated samples. The latter fact may have been caused by the interaction with root exudates in the cropped samples that may have been redistributed or mineralized during the wetting-drying cycles. We conclude that the here presented setup has large potential to investigate unstable infiltration phenomena into soil after an image correction approach has been developed that removes X-ray scattering artifacts. Alternatively, scattering may be suppressed by using a collimator during image acquisition.</p>


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1350
Author(s):  
Yandong Ma ◽  
Jingbo Zhao ◽  
Tianjie Shao ◽  
Zhifeng Jia ◽  
Zhiqiang Zhao ◽  
...  

The hydrologic process of the sandy desert remains a focus in research in arid areas. Three major natural phenomena that can indicate the hydrological cycle in the extremely dry Badain Jaran Desert were found, namely the assemblage of megadune microrelief and evaporite, megadune vegetation and microrelief, as well as lakeside runoff and vegetation. The microrelief sand layer water, evaporite minerals, and lakeside hydrogeological features were analyzed by the drying and weighing method, environmental scanning electron microscopy with energy spectrum analysis functions, and a hydrogeological borehole survey. The water content of the microrelief 0–0.5 m sand layer is between 4.7% and 9.3%. The evaporite minerals are mainly composed of calcite (CaCO3) and gypsum (CaSO4). The shallow groundwater system in the off-shore area of lakes consists of an aeolian sand layer, a peat layer, and a lacustrine sedimentary layer, and the phreatic water with a thickness of 20 cm to 40 cm is reserved in the bottom of aeolian sand layer with a peat layer as a waterproof baseboard. Based on these results, the above three natural phenomena can be explained as follows: (1) The assemblage of megadune microrelief and evaporite was caused by the outcropping of water from megadune vadose zone in the form of preferential flow for a long time. Its leading edge differential wind erosion and calcium cemented fine sand layer indicate that water from the megadune vadose zone moves to and recharges the microrelief water along the micro-scale fine sand layer, during which, it features a multiple layer as it is controlled by a vertical dune bedding structure. (2) The small-scale assemblage of megadune vegetation and microrelief indicates that the water from the megadune vadose zone moved laterally and led to vegetation development, and the assemblage of microrelief and vegetation at a slope scale indicates that the vadose zone water presented multilayer enrichment and runoff producing due, to a great extent, to the bedding structures of different spacial locations. (3) The assemblage of lakeside runoff and vegetation is related to the phreatic water recharged by precipitation surrounding the lake, which indicates that the megadune water recharged by precipitation moved to the bottom of the megadune and constituted supply to the lake water. The three assemblages fully demonstrate that the megadune water recharged by precipitation in this desert could recharge the groundwater water and even lake water in the form of preferential flow due to the control of the bedding structure of different scales within the megadune. The results of lake water balance and the occurrence conditions of phreatic water surrounding the lake imply that the precipitation in this desert plays an important role in sustaining the lake. This study provides reliable evidence for revealing the essence of the hydrological cycle and the source of lake water in the Badain Jaran Desert, which indicates that although precipitation is small, it cannot be ignored in arid sandy desert areas.


Weed Science ◽  
1994 ◽  
Vol 42 (2) ◽  
pp. 233-240 ◽  
Author(s):  
Pau Y. Yen ◽  
William C. Koskinen ◽  
Edward E. Schweizer

Laboratory studies were conducted to determine the influence of degradation and sorption processes on the dissipation of alachlor in one Colorado soil (Kim clay loam) and three Minnesota soils (Port Byron silt loam, Webster silty clay loam, and Estherville sandy loam) as a function of soil depth. Persistence and movement of alachlor in an irrigated corn production system also were determined on the Kim soil. Laboratory degradation data fit first-order kinetics, and rate constants ranged from 0.0094 to 0.0251 d-1and varied with soil type and depth. For instance, in 60- to 75-cm-depth Kim soil, alachlor degraded at a slower rate (k = 0.011 d-1) than in surface soil samples (k = 0.022 d-1). Alachlor sorption to the four soils was moderate (Kf= 0.7 to 7.4; Kf,oc= 71 to 470) and concentration dependent (1/n < 1.0). Significant hysteretic desorption of alachlor from soils also was observed (1/n desorption < 1/n sorption). The combined effect of degradation and sorption processes has been used to classify a chemical's potential to leach to groundwater. Based on Kf,ocand dissipation half-life, alachlor would be classified as a “leacher” in Kim, Port Byron, and Estherville soils and classified as transitional between “leacher” and “nonleacher” in the Webster soil. The dissipation first-order rate constant (k) of alachlor in Kim soil in the field was 0.036 α 0.012 d-1. Dissipation was apparently not due to leaching since bromide applied at the same time remained in the top 15 cm during the first 28 d. It appears that laboratory-derived leaching indices may overestimate actual leaching and should be used with caution for predictive or regulatory purposes.


2020 ◽  
Vol 21 (3-4) ◽  
pp. 267-290 ◽  
Author(s):  
A. E. Noble ◽  
C. B. Tuit ◽  
J. P. Maney ◽  
A. D. Wait

Sign in / Sign up

Export Citation Format

Share Document