nitrate transport
Recently Published Documents


TOTAL DOCUMENTS

342
(FIVE YEARS 71)

H-INDEX

45
(FIVE YEARS 6)

2022 ◽  
Vol 12 ◽  
Author(s):  
Dongqing Yang ◽  
Jihao Zhao ◽  
Chen Bi ◽  
Liuyin Li ◽  
Zhenlin Wang

Wheat growth and nitrogen (N) uptake gradually decrease in response to high NH4+/NO3– ratio. However, the mechanisms underlying the response of wheat seedling roots to changes in NH4+/NO3– ratio remain unclear. In this study, we investigated wheat growth, transcriptome, and proteome profiles of roots in response to increasing NH4+/NO3– ratios (Na: 100/0; Nr1: 75/25, Nr2: 50/50, Nr3: 25/75, and Nn: 0/100). High NH4+/NO3– ratio significantly reduced leaf relative chlorophyll content, Fv/Fm, and ΦII values. Both total root length and specific root length decreased with increasing NH4+/NO3– ratios. Moreover, the rise in NH4+/NO3– ratio significantly promoted O2– production. Furthermore, transcriptome sequencing and tandem mass tag-based quantitative proteome analyses identified 14,376 differentially expressed genes (DEGs) and 1,819 differentially expressed proteins (DEPs). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis indicated that glutathione metabolism and phenylpropanoid biosynthesis were the main two shared enriched pathways across ratio comparisons. Upregulated DEGs and DEPs involving glutathione S-transferases may contribute to the prevention of oxidative stress. An increment in the NH4+/NO3– ratio induced the expression of genes and proteins involved in lignin biosynthesis, which increased root lignin content. Additionally, phylogenetic tree analysis showed that both A0A3B6NPP6 and A0A3B6LM09 belong to the cinnamyl-alcohol dehydrogenase subfamily. Fifteen downregulated DEGs were identified as high-affinity nitrate transporters or nitrate transporters. Upregulated TraesCS3D02G344800 and TraesCS3A02G350800 were involved in ammonium transport. Downregulated A0A3B6Q9B3 is involved in nitrate transport, whereas A0A3B6PQS3 is a ferredoxin-nitrite reductase. This may explain why an increase in the NH4+/NO3– ratio significantly reduced root NO3–-N content but increased NH4+-N content. Overall, these results demonstrated that increasing the NH4+/NO3– ratio at the seedling stage induced the accumulation of reactive oxygen species, which in turn enhanced root glutathione metabolism and lignification, thereby resulting in increased root oxidative tolerance at the cost of reducing nitrate transport and utilization, which reduced leaf photosynthetic capacity and, ultimately, plant biomass accumulation.


Nitrogen ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 491-505
Author(s):  
László Kupcsik ◽  
Claudia Chiodi ◽  
Taraka Ramji Moturu ◽  
Hugues De Gernier ◽  
Loïc Haelterman ◽  
...  

The worldwide demand for vegetable oils is rising. Oilseed rape (Brassica napus) diversifies cereal dominated crop rotations but requires important nitrogen input. Yet, the root organ is offering an untapped opportunity to improve the nitrogen capture in soil. This study evaluates three culture systems in controlled environment, to observe root morphology and to identify root attributes for superior biomass production and nitrogen use. The phenotypic diversity in a panel of 55 modern winter oilseed rape cultivars was screened in response to two divergent nitrate supplies. Upon in vitro and hydroponic cultures, a large variability for root morphologies was observed. Root biomass and morphological traits positively correlated with shoot biomass or leaf area. The activities of high-affinity nitrate transport systems correlated negatively with the leaf area, while the combined high- and low-affinity systems positively with the total root length. The X-ray computed tomography permitted to visualize the root system in pipes filled with soil. The in vitro root phenotype at germination stage was indicative of lateral root deployment in soil-grown plants. This study highlights great genetic potential in oilseed rape, which could be manipulated to optimize crop root characteristics and nitrogen capture with substantial implications for agricultural production.


2021 ◽  
Vol 8 ◽  
Author(s):  
Caryn Z. Pang ◽  
Yuen K. Ip ◽  
Shit F. Chew

Giant clams are important ecosystem engineers of coral reefs because they harbor large quantities of phototrophic Symbiodiniaceae dinoflagellates of mainly genera Symbiodinium, Cladocopium, and Durusdinium. The coccoid dinoflagellates donate photosynthate and amino acids to the clam host, which in return needs to supply inorganic carbon and nitrogen to them. The host can conduct light-enhanced absorption of nitrate (NO3–), which can only be metabolized by the symbionts. This study aimed to clone nitrate transporter 2 (NRT2) from the symbionts of the fluted giant clam, Tridacna squamosa. Here, we report three major sequences of NRT2 derived from Symbiodinium (Symb-NRT2), Cladocopium (Clad-NRT2) and Durusdinium (Duru-NRT2). Phenogramic analysis and molecular characterization confirmed that these three sequences were NRT2s derived from dinoflagellates. Immunofluorescence microscopy localized NRT2 at the plasma membrane and cytoplasmic vesicles of the symbiotic dinoflagellates, indicating that it could partake in the uptake and transport of NO3–. Therefore, the transcript levels of Symb-NRT2, Clad-NRT2, and Duru-NRT2 could be used as molecular indicators to estimate the potential of NO3– transport in five organs of 13 T. squamosa individuals. The transcript levels of form II ribulose-1, 5-bisphosphate carboxylase/oxygenase (rbcII) of Symbiodinium (Symb-rbcII), Cladocopium (Clad-rbcII) and Durusdinium (Duru-rbcII) were also determined in order to calculate the transcript ratios of Symb-NRT2/Symb-rbcII, Clad-NRT2/Clad-rbcII, and Duru-NRT2/Duru-rbcII. These ratios expressed the potentials of NO3– transport with reference to the phototrophic potentials in a certain genus of coccoid dinoflagellate independent of its quantity. Results obtained indicate that Symbiodinium generally had a higher potential of NO3– transport than Cladocopium and Durusdinium at the genus level. Furthermore, some phylotypes (species) of Symbiodinium, particularly those in the colorful outer mantle, had very high Symb-NRT2/Symb-rbcII ratio (7–13), indicating that they specialized in NO3– uptake and nitrogen metabolism. Overall, our results indicate for the first time that different phylotypes of Symbiodiniaceae dinoflagellates could have dissimilar abilities to absorb and assimilate NO3–, alluding to their functional diversity at the genus and species levels.


2021 ◽  
Vol 22 (23) ◽  
pp. 13036
Author(s):  
Normig M. Zoghbi-Rodríguez ◽  
Samuel David Gamboa-Tuz ◽  
Alejandro Pereira-Santana ◽  
Luis C. Rodríguez-Zapata ◽  
Lorenzo Felipe Sánchez-Teyer ◽  
...  

Nitrate transporter 2 (NRT2) and NRT3 or nitrate-assimilation-related 2 (NAR2) proteins families form a two-component, high-affinity nitrate transport system, which is essential for the acquisition of nitrate from soils with low N availability. An extensive phylogenomic analysis across land plants for these families has not been performed. In this study, we performed a microsynteny and orthology analysis on the NRT2 and NRT3 genes families across 132 plants (Sensu lato) to decipher their evolutionary history. We identified significant differences in the number of sequences per taxonomic group and different genomic contexts within the NRT2 family that might have contributed to N acquisition by the plants. We hypothesized that the greater losses of NRT2 sequences correlate with specialized ecological adaptations, such as aquatic, epiphytic, and carnivory lifestyles. We also detected expansion on the NRT2 family in specific lineages that could be a source of key innovations for colonizing contrasting niches in N availability. Microsyntenic analysis on NRT3 family showed a deep conservation on land plants, suggesting a high evolutionary constraint to preserve their function. Our study provides novel information that could be used as guide for functional characterization of these gene families across plant lineages.


Author(s):  
Hyojin Kim ◽  
Rasmus Jakobsen ◽  
Jens Aamand ◽  
Niels Claes ◽  
Mogens Erlandsen ◽  
...  
Keyword(s):  

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0257870
Author(s):  
Prashant Swapnil ◽  
Mukesh Meena ◽  
Ashwani K. Rai

Nitrate transport in cyanobacteria is mediated by ABC-transporter, which consists of a highly conserved ATP binding cassette (ABC) and a less conserved transmembrane domain (TMD). Under salt stress, recombinant glycinebetaine (GB) not only protected the rate of nitrate transport in transgenic Anabaena PCC 7120, rather stimulated the rate by interacting with the ABC-transporter proteins. In silico analyses revealed that nrtA protein consisted of 427 amino acids, the majority of which were hydrophobic and contained a Tat (twin-arginine translocation) signal profile of 34 amino acids (1–34). The nrtC subunit of 657 amino acids contained two hydrophobic distinct domains; the N-terminal (5–228 amino acids), which was 59% identical to nrtD (the ATP-binding subunit) and the C-terminal (268–591), 28.2% identical to nrtA, suggesting C-terminal as a solute binding domain and N-terminal as ATP binding domain. Subunit nrtD consisted of 277 amino acids and its N-terminal (21–254) was an ATP binding motif. Phylogenetic analysis revealed that nitrate-ABC-transporter proteins are highly conserved among the cyanobacterial species, though variation existed in sequences resulting in several subclades. Nostoc PCC 7120 was very close to Anabaena variabilis ATCC 29413, Anabaena sp. 4–3 and Anabaena sp. CA = ATCC 33047. On the other, Nostoc spp. NIES-3756 and PCC 7524 were often found in the same subclade suggesting more work before referring it to Anabaena PCC 7120 or Nostoc PCC 7120. The molecular interaction of nitrate with nrtA was hydrophilic, while hydrophobic with nrtC and nrtD. GB interaction with nrtACD was hydrophobic and showed higher affinity compared to nitrate.


2021 ◽  
pp. 45-70
Author(s):  
Sara Vero ◽  
Matthew Ascott

2021 ◽  
Author(s):  
Ethan N.W. Howe ◽  
Vai-Vai Tiffany Chang ◽  
Xin Wu ◽  
Mohamed Fares ◽  
William Lewis ◽  
...  

Phenylthiosemicarbazones (PTSCs) are proton-coupled anion transporters with pH-switchable behaviour known to be regulated by an imine protonation equilibrium. Previously, chloride/nitrate exchange by PTSCs was found to be inactive at pH 7.2 due to locking of the thiourea anion binding site by an intramolecular hydrogen bond, and switched ON upon imine protonation at pH 4.5. The rate-determining process of the pH switch, however, was not examined. We here develop a new series of PTSCs and demonstrate their conformational behaviour by X-ray crystallographic analysis and pH-switchable anion transport properties by liposomal assays. We report the surprising finding that the protonated PTSCs are extremely selective for halides over oxyanions in membrane transport. Owing to the high chloride over nitrate selectivity, the pH-dependent chloride/nitrate exchange of PTSCs originates from the rate-limiting nitrate transport process being inhibited at neutral pH.


2021 ◽  
Author(s):  
Ethan N.W. Howe ◽  
Vai-Vai Tiffany Chang ◽  
Xin Wu ◽  
Mohamed Fares ◽  
William Lewis ◽  
...  

Phenylthiosemicarbazones (PTSCs) are proton-coupled anion transporters with pH-switchable behaviour known to be regulated by an imine protonation equilibrium. Previously, chloride/nitrate exchange by PTSCs was found to be inactive at pH 7.2 due to locking of the thiourea anion binding site by an intramolecular hydrogen bond, and switched ON upon imine protonation at pH 4.5. The rate-determining process of the pH switch, however, was not examined. We here develop a new series of PTSCs and demonstrate their conformational behaviour by X-ray crystallographic analysis and pH-switchable anion transport properties by liposomal assays. We report the surprising finding that the protonated PTSCs are extremely selective for halides over oxyanions in membrane transport. Owing to the high chloride over nitrate selectivity, the pH-dependent chloride/nitrate exchange of PTSCs originates from the rate-limiting nitrate transport process being inhibited at neutral pH.


Sign in / Sign up

Export Citation Format

Share Document