Predicting Activity of Protoporphyrinogen Oxidase Inhibitors by Computer-Aided Molecular Modeling

Author(s):  
Krishna N. Reddy ◽  
Ujjana B. Nandihalli ◽  
Hee Jae Lee ◽  
Mary V. Duke ◽  
Stephen O. Duke
Author(s):  
A. M. Andrianov ◽  
A. M. Yushkevich ◽  
I. P. Bosko ◽  
A. D. Karpenko ◽  
Yu. V. Kornoushenko ◽  
...  

An integrated approach including the click chemistry methodology, molecular docking, quantum mechanics, and molecular dynamics was used to perform the computer-aided design of potential HIV-1 inhibitors able to block the membrane- proximal external region (MPER) of HIV-1 gp41 that plays an important role in the fusion of the viral and host cell membranes. Evaluation of the binding efficiency of the designed compounds to the HIV-1 MPER peptide was performed using the methods of molecular modeling, resulting in nine chemical compounds that exhibit the high-affinity binding to this functionally important site of the trimeric “spike” of the viral envelope. The data obtained indicate that the identified compounds are promising for the development of novel antiviral drugs, HIV fusion inhibitors blocking the early stages of HIV infection.


Author(s):  
Nitha V R

The primary purpose of this paper is to provide feasibility study of Cassandra and spark in Computer Aided Drug Design (CADD). The Apache Cassandra database is a big data management tool which can be used to store huge amount of data in different file formats. A huge database can be designed with details of all known molecules or compounds that are existing on earth. The information regarding the compounds such as selectivity, solubility, synthetic viability, affinity, adverse reactions, metabolism and environmental toxicity along with the 3 D structure of molecule can be stored in this big database. A data analytics tool “spark” can be efficiently used in mining and managing huge data stored in the database. Integrating big data in CADD helps in identifying the candidate drugs within minutes, not years. It may take eight to fifteen years to develop a new drug traditionally. Spark is written in Scala Programming Language which runs on Java Virtual Machine (JVM) and it supports Scala, Java and Python Programming languages .Cassandra can provide connectors to different programming languages, hence it’s very easy to integrate any other molecular modeling tool with Spark. A python based molecular modeling tool called Pymol can be easily implemented with Spark. CADD helps in identifying new drugs by computational means thus eliminating unnecessary cost incurred in chemical testing of drugs.


Sign in / Sign up

Export Citation Format

Share Document