Two-Year Operation of an Air-Iron Treatment System for the Removal of Arsenic from Simulated Bangladeshi Tubewell Water

Author(s):  
Ahmedul Hye Chowdhury ◽  
Phillip T. Crisp
2009 ◽  
Vol 60 (9) ◽  
pp. 2301-2308 ◽  
Author(s):  
Tien Vinh Nguyen ◽  
Thi Van Trang Nguyen ◽  
Tuan Linh Pham ◽  
Saravanamuth Vigneswaran ◽  
Huu Hao Ngo ◽  
...  

There is a global need to develop low-cost technologies to remove arsenic from water for individual household water supply. In this study, a purified and enriched waste material (treated magnetite waste, TMW) from the Trai Cau's iron ore mine in the Thai Nguyen Province in Vietnam was examined for its capacity to remove arsenic. The treatment system was packed with TMW that consisted of 75% of ferrous-ferric oxide (Fe3O4) and had a large surface area of 89.7 m2/g. The experiments were conducted at a filtration rate of 0.05 m/h to treat groundwater with an arsenic concentration of 380 μg/L and iron, manganese and phosphate concentrations of 2.07 mg/L, 0.093 mg/L and 1.6 mg/L respectively. The batch experimental results show that this new material was able to absorb up to 0.74 mg arsenic/g. The results also indicated that the treatment system removed more than 90% arsenic giving an effluent with an arsenic concentration of less than 30 μg/L while achieving a removal efficiency of about 80% for Mn2 +  and PO43−. This could be a promising and cost-effective new material for capturing arsenic as well as other metals from groundwater.


Hydrology ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 15
Author(s):  
Lavane Kim ◽  
Nguyen Truong Thanh ◽  
Pham Van Toan ◽  
Huynh Vuong Thu Minh ◽  
Pankaj Kumar

Because of its threat to the quality of freshwater resources and human health, arsenic (As) pollution is important to scientific communities and policymakers around the world. The Mekong Delta, Vietnam, is one hotspot of As pollution. Its risk assessment of different environmental components has been well documented; however, very few studies focus on As removal techniques. Considering this information gap, this study aimed to investigate the performance of an innovative and low-cost treatment system using Fe(III)-oxyhydroxide (FeOOH) coated sand to remove As(III) from aqueous solution. Batch and column experiments were conducted at a laboratory scale in order to study removal kinetics and efficiency. Experimental results indicated that the adsorption isotherm of As(III) on FeOOH coated sand using Langmuir and Freundlich models have high regression factors of 0.987 and 0.991, respectively. The batch adsorption experiment revealed that contact time was approximately 8 h for rough saturation (kinetic test). The concentration of As(III) in effluents at flow rates of 0.6 L/h, 0.9 L/h, and 1.8 L/h ranged from 1.1 µg/L to 1.7 µg/L. Results from this study indicated that FeOOH coated sand columns were effective in removing As(III) from water, with a removal efficiency of 99.1%. Ultimately, FeOOH coated sand filtration could be a potential treatment system to reduce As(III) in the domestic water supply in remote areas of the Vietnamese Mekong Delta.


2010 ◽  
Author(s):  
Richard Kaplan ◽  
Kenneth A. Loparo

2018 ◽  
Vol 18 (1) ◽  
pp. 107-115 ◽  
Author(s):  
Kwang-Hee Lee ◽  
◽  
Min-Ho Kim ◽  
Nam-Woo An ◽  
Chul-hwi Park

2019 ◽  
Vol 12 (4) ◽  
pp. 149-178
Author(s):  
Daewon Kim ◽  
◽  
Kwangsoub Song

Sign in / Sign up

Export Citation Format

Share Document