Model-based optimization of equipment and control for heat flux measurements in a laboratory fermentor

1995 ◽  
Vol 11 (5) ◽  
pp. 525-532 ◽  
Author(s):  
Bastiaan H. A. van Kleeff ◽  
J. Gijs Kuenen ◽  
Ger Honderd ◽  
Sef J. Heijnen
1993 ◽  
Author(s):  
Gabor Karsai ◽  
Samir Padalkar ◽  
Hubertus Franke ◽  
Janos Sztipanovits

2018 ◽  
Vol 2018 (13) ◽  
pp. 2700-2708 ◽  
Author(s):  
Lisha Guo ◽  
John Walton ◽  
Sovanna Tik ◽  
Zachary Scott ◽  
Keshab Raj Sharma ◽  
...  

2016 ◽  
Author(s):  
Gabriela Villegas ◽  
◽  
Jerry P. Fairley ◽  
Cary R. Lindsey ◽  
Megan M. Aunan ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 (12) ◽  
pp. 5490
Author(s):  
Anna Maria Gargiulo ◽  
Ivan di Stefano ◽  
Antonio Genova

The exploration of planetary surfaces with unmanned wheeled vehicles will require sophisticated software for guidance, navigation and control. Future missions will be designed to study harsh environments that are characterized by rough terrains and extreme conditions. An accurate knowledge of the trajectory of planetary rovers is fundamental to accomplish the scientific goals of these missions. This paper presents a method to improve rover localization through the processing of wheel odometry (WO) and inertial measurement unit (IMU) data only. By accurately defining the dynamic model of both a rover’s wheels and the terrain, we provide a model-based estimate of the wheel slippage to correct the WO measurements. Numerical simulations are carried out to better understand the evolution of the rover’s trajectory across different terrain types and to determine the benefits of the proposed WO correction method.


Author(s):  
Byrenn Birch ◽  
David Buttsworth ◽  
Stefan Löhle ◽  
Fabian Hufgard

2021 ◽  
Author(s):  
Lucas Emilio B. Hoeltgebaum ◽  
Nelson Luís Dias ◽  
Marcelo Azevedo Costa

Sign in / Sign up

Export Citation Format

Share Document