scholarly journals Model-Based Slippage Estimation to Enhance Planetary Rover Localization with Wheel Odometry

2021 ◽  
Vol 11 (12) ◽  
pp. 5490
Author(s):  
Anna Maria Gargiulo ◽  
Ivan di Stefano ◽  
Antonio Genova

The exploration of planetary surfaces with unmanned wheeled vehicles will require sophisticated software for guidance, navigation and control. Future missions will be designed to study harsh environments that are characterized by rough terrains and extreme conditions. An accurate knowledge of the trajectory of planetary rovers is fundamental to accomplish the scientific goals of these missions. This paper presents a method to improve rover localization through the processing of wheel odometry (WO) and inertial measurement unit (IMU) data only. By accurately defining the dynamic model of both a rover’s wheels and the terrain, we provide a model-based estimate of the wheel slippage to correct the WO measurements. Numerical simulations are carried out to better understand the evolution of the rover’s trajectory across different terrain types and to determine the benefits of the proposed WO correction method.

Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5245 ◽  
Author(s):  
Lulu Gao ◽  
Fei Ma ◽  
Chun Jin

This paper presents a novel model-based method for estimating the attitude of underground articulated vehicles (UAV). We selected the Load–Haul–Dump (LHD) vehicle as our application object, as it is a typical UAV. First, we established the involved models of the LHD vehicle, including a kinematic model, the linear and angular constraints of a center articulation model, and a dynamic four degrees-of-freedom (DOF) yaw model. Second, we designed a Kalman filter (KF) to integrate the kinematic and constraint models with the data from an inertial measurement unit (IMU), overcoming gyroscope drift and disturbances in external acceleration. In addition, we designed another KF to estimate the yaw based on the dynamic yaw model. The accuracy of the estimations was further enhanced by data fusion. Then, the proposed method was validated by a simulation and a field test under different dynamic conditions. The errors in the estimation of roll, pitch, and yaw were 3.8%, 2.4%, and 4.2%, respectively, in the field test. The estimated longitudinal acceleration was used to obtain the velocity of the LHD vehicle; the error was found to be 1.2%. A comparison of these results to those of other methods showed that the proposed method has high precision. The proposed model-based method will greatly benefit the location, navigation, and control of UAVs without any artificial infrastructure in a global positioning system (GPS)-free environment.


2013 ◽  
Vol 785-786 ◽  
pp. 1560-1563
Author(s):  
De Long Feng ◽  
Suo Chang Yang ◽  
Ying Xi Liu

This paper presents a project of missile guidance system based on the strapdown guidance technology. The project is composed of strapdown seeker and inertial measurement unit. The integrated guidance and control technology have been adopted. The project raise accuracy of missiles on the premise that the low cost should be guaranteed. According to simulation experiment, this paper proves the feasiblity of the scheme, and it has good ballistic missile.


2010 ◽  
Vol 07 (01) ◽  
pp. 5-29 ◽  
Author(s):  
MIN-SU KIM ◽  
JUN HO OH

This paper contains an adjustment of the stiffness and control algorithm of an ankle joint to maintain the posture of a humanoid biped walking robot using an IMU (Inertial measurement Unit) in single support phase. One of the difficulties in maintaining the balance of a robot in single support phase involves the sole of the robot, which is easy to separate from the ground. This phenomenon is caused by an external disturbance or when the sole lands on uneven terrain. A method of adjusting the compliance in the ankle joint is introduced to reduce the tendency of this type of occurrence. In order to maintain the posture of a robot with a compliant ankle joint, a posture controller composed of a body balancing controller and a vibration reduction controller is adopted. A walking experiment is implemented using a compliant ankle joint and the posture controller. The proposed method is shown to enable rapid walking as well as walking on uneven terrain.


Sign in / Sign up

Export Citation Format

Share Document