scholarly journals Artificial intelligence leaps into chemical space

2020 ◽  
Vol 98 (13) ◽  
pp. 30-35
Author(s):  
Vishal Babu Siramshetty ◽  
Dac-Trung Nguyen ◽  
Natalia J. Martinez ◽  
Anton Simeonov ◽  
Noel T. Southall ◽  
...  

The rise of novel artificial intelligence methods necessitates a comparison of this wave of new approaches with classical machine learning for a typical drug discovery project. Inhibition of the potassium ion channel, whose alpha subunit is encoded by human Ether-à-go-go-Related Gene (hERG), leads to prolonged QT interval of the cardiac action potential and is a significant safety pharmacology target for the development of new medicines. Several computational approaches have been employed to develop prediction models for assessment of hERG liabilities of small molecules including recent work using deep learning methods. Here we perform a comprehensive comparison of prediction models based on classical (random forests and gradient boosting) and modern (deep neural networks and recurrent neural networks) artificial intelligence methods. The training set (~9000 compounds) was compiled by integrating hERG bioactivity data from ChEMBL database with experimental data generated from an in-house, high-throughput thallium flux assay. We utilized different molecular descriptors including the latent descriptors, which are real-valued continuous vectors derived from chemical autoencoders trained on a large chemical space (> 1.5 million compounds). The models were prospectively validated on ~840 in-house compounds screened in the same thallium flux assay. The deep neural networks performed significantly better than the classical methods with the latent descriptors. The recurrent neural networks that operate on SMILES provided highest model sensitivity. The best models were merged into a consensus model that offered superior performance compared to reference models from academic and commercial domains. Further, we shed light on the potential of artificial intelligence methods to exploit the chemistry big data and generate novel chemical representations useful in predictive modeling and tailoring new chemical space.<br>


2020 ◽  
Author(s):  
Navneet Bung ◽  
Sowmya Ramaswamy Krishnan ◽  
Gopalakrishnan Bulusu ◽  
Arijit Roy

The novel SARS-CoV-2 is the source of a global pandemic COVID-19, which has severely affected the health and economy of several countries. Multiple studies are in progress, employing diverse approaches to design novel therapeutics against the potential target proteins in SARS-CoV-2. One of the well-studied protein targets for coronaviruses is the chymotrypsin-like (3CL) protease, responsible for post-translational modifications of viral polyproteins essential for its survival and replication in the host. There are ongoing attempts to repurpose the existing viral protease inhibitors against 3CL protease of SARS-CoV-2. Recent studies have proven the efficiency of artificial intelligence techniques in learning the known chemical space and generating novel small molecules. In this study, we employed deep neural network-based generative and predictive models for de novo design of new small molecules capable of inhibiting the 3CL protease. The generated small molecules were filtered and screened against the binding site of the 3CL protease structure of SARS-CoV-2. Based on the screening results and further analysis, we have identified 31 potential compounds as ideal candidates for further synthesis and testing against SARS-CoV-2. The generated small molecules were also compared with available natural products. Two of the generated small molecules showed high similarity to a plant natural product, Aurantiamide, which can be used for rapid testing during this time of crisis.


2020 ◽  
Author(s):  
Francesca Grisoni ◽  
Berend Huisman ◽  
Alexander Button ◽  
Michael Moret ◽  
Kenneth Atz ◽  
...  

<p>Automation of the molecular design-make-test-analyze cycle speeds up the identification of hit and lead compounds for drug discovery. Using deep learning for computational molecular design and a customized microfluidics platform for on-chip compound synthesis, liver X receptor (LXR) agonists were generated from scratch. The computational pipeline was tuned to explore the chemical space defined by known LXRα agonists, and to suggest structural analogs of known ligands and novel molecular cores. To further the design of lead-like molecules and ensure compatibility with automated on-chip synthesis, this chemical space was confined to the set of virtual products obtainable from 17 different one-step reactions. Overall, 25 <i>de novo</i> generated compounds were successfully synthesized in flow via formation of sulfonamide, amide bond, and ester bond. First-pass <i>in vitro</i> activity screening of the crude reaction products in hybrid Gal4 reporter gene assays revealed 17 (68%) hits, with up to 60-fold LXR activation. The batch re-synthesis, purification, and re-testing of 14 of these compounds confirmed that 12 of them were potent LXRα or LXRβ agonists. These results support the utilization of the proposed design-make-test-analyze framework as a blueprint for automated drug design with artificial intelligence and miniaturized bench-top synthesis.<b></b></p>


Author(s):  
Navneet Bung ◽  
Sowmya Ramaswamy Krishnan ◽  
Gopalakrishnan Bulusu ◽  
Arijit Roy

The novel SARS-CoV-2 is the source of a global pandemic COVID-19, which has severely affected the health and economy of several countries. Multiple studies are in progress, employing diverse approaches to design novel therapeutics against the potential target proteins in SARS-CoV-2. One of the well-studied protein targets for coronaviruses is the chymotrypsin-like (3CL) protease, responsible for post-translational modifications of viral polyproteins essential for its survival and replication in the host. There are ongoing attempts to repurpose the existing viral protease inhibitors against 3CL protease of SARS-CoV-2. Recent studies have proven the efficiency of artificial intelligence techniques in learning the known chemical space and generating novel small molecules. In this study, we employed deep neural network-based generative and predictive models for de novo design of new small molecules capable of inhibiting the 3CL protease. The generated small molecules were filtered and screened against the binding site of the 3CL protease structure of SARS-CoV-2. Based on the screening results and further analysis, we have identified 31 potential compounds as ideal candidates for further synthesis and testing against SARS-CoV-2. The generated small molecules were also compared with available natural products. Two of the generated small molecules showed high similarity to a plant natural product, Aurantiamide, which can be used for rapid testing during this time of crisis.


2020 ◽  
Author(s):  
Srilok Srinivasan ◽  
Rohit Batra ◽  
Henry Chan ◽  
Ganesh Kamath ◽  
Mathew J. Cherukara ◽  
...  

An extensive search for active therapeutic agents against the SARS-CoV-2 is being conducted across the globe. Computational docking simulations have traditionally been used for <i>in silico</i> ligand design and remain popular method of choice for high-throughput screening of therapeutic agents in the fight against COVID-19. Despite the vast chemical space (millions to billions of biomolecules) that can be potentially explored as therapeutic agents, we remain severely limited in the search of candidate compounds owing to the high computational cost of these ensemble docking simulations employed in traditional <i>in silico</i> ligand design. Here, we present a <i>de novo</i> molecular design strategy that leverages artificial intelligence to discover new therapeutic biomolecules against SARS-CoV-2. A Monte Carlo Tree Search algorithm combined with a multi-task neural network (MTNN) surrogate model for expensive docking simulations and recurrent neural networks (RNN) for rollouts, is used to sample the exhaustive SMILES space of candidate biomolecules. Using Vina scores as target objective to measure binding of therapeutic molecules to either the isolated spike protein (S-protein) of SARS-CoV-2 at its host receptor region or to the S-protein:Angiotensin converting enzyme 2 (ACE2) receptor interface, we generate several (~100's) new biomolecules that outperform FDA (~1000’s) and non-FDA biomolecules (~million) from existing databases. A transfer learning strategy is deployed to retrain the MTNN surrogate as new candidate molecules are identified - this iterative search and retrain strategy is shown to accelerate the discovery of desired candidates. We perform detailed analysis using Lipinski's rules and also analyze the structural similarities between the various top performing candidates. We spilt the molecules using a molecular fragmenting algorithm and identify the common chemical fragments and patterns – such information is important to identify moieties that are responsible for improved performance. Although we focus on therapeutic biomolecules, our AI strategy is broadly applicable for accelerated design and discovery of any chemical molecules with user-desired functionality.


2020 ◽  
Author(s):  
Navneet Bung ◽  
Sowmya Ramaswamy Krishnan ◽  
Gopalakrishnan Bulusu ◽  
Arijit Roy

The novel SARS-CoV-2 is the source of a global pandemic COVID-19, which has severely affected the health and economy of several countries. Multiple studies are in progress, employing diverse approaches to design novel therapeutics against the potential target proteins in SARS-CoV-2. One of the well-studied protein targets for coronaviruses is the chymotrypsin-like (3CL) protease, responsible for post-translational modifications of viral<br>polyproteins essential for its survival and replication in the host. There are ongoing attempts to repurpose the existing viral protease inhibitors against 3CL protease of SARS-<br>CoV-2. Recent studies have proven the efficiency of artificial intelligence techniques in learning the known chemical space and generating novel small molecules. In this study,<br>we employed deep neural network-based generative and predictive models for de novo design of new small molecules capable of inhibiting the 3CL protease. The generated<br>small molecules were filtered and screened against the binding site of the 3CL protease structure of SARS-CoV-2. Based on the screening results and further analysis, we have<br>identified 31 potential compounds as ideal candidates for further synthesis and testing against SARS-CoV-2.


2021 ◽  
Vol 7 (24) ◽  
pp. eabg3338
Author(s):  
Francesca Grisoni ◽  
Berend J. H. Huisman ◽  
Alexander L. Button ◽  
Michael Moret ◽  
Kenneth Atz ◽  
...  

Automating the molecular design-make-test-analyze cycle accelerates hit and lead finding for drug discovery. Using deep learning for molecular design and a microfluidics platform for on-chip chemical synthesis, liver X receptor (LXR) agonists were generated from scratch. The computational pipeline was tuned to explore the chemical space of known LXRα agonists and generate novel molecular candidates. To ensure compatibility with automated on-chip synthesis, the chemical space was confined to the virtual products obtainable from 17 one-step reactions. Twenty-five de novo designs were successfully synthesized in flow. In vitro screening of the crude reaction products revealed 17 (68%) hits, with up to 60-fold LXR activation. The batch resynthesis, purification, and retesting of 14 of these compounds confirmed that 12 of them were potent LXR agonists. These results support the suitability of the proposed design-make-test-analyze framework as a blueprint for automated drug design with artificial intelligence and miniaturized bench-top synthesis.


Sign in / Sign up

Export Citation Format

Share Document