scholarly journals Chemical Space Exploration of DprE1 Inhibitors Using Chemoinformatics and Artificial Intelligence

ACS Omega ◽  
2021 ◽  
Author(s):  
Sonali Chhabra ◽  
Sunil Kumar ◽  
Raman Parkesh
2021 ◽  
Author(s):  
Adarsh Kalikadien ◽  
Evgeny A. Pidko ◽  
Vivek Sinha

<div>Local chemical space exploration of an experimentally synthesized material can be done by making slight structural</div><div>variations of the synthesized material. This generation of many molecular structures with reasonable quality,</div><div>that resemble an existing (chemical) purposeful material, is needed for high-throughput screening purposes in</div><div>material design. Large databases of geometry and chemical properties of transition metal complexes are not</div><div>readily available, although these complexes are widely used in homogeneous catalysis. A Python-based workflow,</div><div>ChemSpaX, that is aimed at automating local chemical space exploration for any type of molecule, is introduced.</div><div>The overall computational workflow of ChemSpaX is explained in more detail. ChemSpaX uses 3D information,</div><div>to place functional groups on an input structure. For example, the input structure can be a catalyst for which one</div><div>wants to use high-throughput screening to investigate if the catalytic activity can be improved. The newly placed</div><div>substituents are optimized using a computationally cheap force-field optimization method. After placement of</div><div>new substituents, higher level optimizations using xTB or DFT instead of force-field optimization are also possible</div><div>in the current workflow. In representative applications of ChemSpaX, it is shown that the structures generated by</div><div>ChemSpaX have a reasonable quality for usage in high-throughput screening applications. Representative applications</div><div>of ChemSpaX are shown by investigating various adducts on functionalized Mn-based pincer complexes,</div><div>hydrogenation of Ru-based pincer complexes, functionalization of cobalt porphyrin complexes and functionalization</div><div>of a bipyridyl functionalized cobalt-porphyrin trapped in a M2L4 type cage complex. Descriptors such as</div><div>the Gibbs free energy of reaction and HOMO-LUMO gap, that can be used in data-driven design and discovery</div><div>of catalysts, were selected and studied in more detail for the selected use cases. The relatively fast GFN2-xTB</div><div>method was used to calculate these descriptors and a comparison was done against DFT calculated descriptors.</div><div>ChemSpaX is open-source and aims to bolster the efforts of the scientific community towards data-driven material</div><div>discovery.</div>


Author(s):  
Vishal Babu Siramshetty ◽  
Dac-Trung Nguyen ◽  
Natalia J. Martinez ◽  
Anton Simeonov ◽  
Noel T. Southall ◽  
...  

The rise of novel artificial intelligence methods necessitates a comparison of this wave of new approaches with classical machine learning for a typical drug discovery project. Inhibition of the potassium ion channel, whose alpha subunit is encoded by human Ether-à-go-go-Related Gene (hERG), leads to prolonged QT interval of the cardiac action potential and is a significant safety pharmacology target for the development of new medicines. Several computational approaches have been employed to develop prediction models for assessment of hERG liabilities of small molecules including recent work using deep learning methods. Here we perform a comprehensive comparison of prediction models based on classical (random forests and gradient boosting) and modern (deep neural networks and recurrent neural networks) artificial intelligence methods. The training set (~9000 compounds) was compiled by integrating hERG bioactivity data from ChEMBL database with experimental data generated from an in-house, high-throughput thallium flux assay. We utilized different molecular descriptors including the latent descriptors, which are real-valued continuous vectors derived from chemical autoencoders trained on a large chemical space (> 1.5 million compounds). The models were prospectively validated on ~840 in-house compounds screened in the same thallium flux assay. The deep neural networks performed significantly better than the classical methods with the latent descriptors. The recurrent neural networks that operate on SMILES provided highest model sensitivity. The best models were merged into a consensus model that offered superior performance compared to reference models from academic and commercial domains. Further, we shed light on the potential of artificial intelligence methods to exploit the chemistry big data and generate novel chemical representations useful in predictive modeling and tailoring new chemical space.<br>


2020 ◽  
Vol 21 (21) ◽  
pp. 8199
Author(s):  
Fernando Rodrigues de Sá Alves ◽  
Rafael M. Couñago ◽  
Stefan Laufer

This paper focuses on new derivatives bearing an oxetane group to extend accessible chemical space for further identification of kinase inhibitors. The ability to modulate kinase activity represents an important therapeutic strategy for the treatment of human illnesses. Known as a nonclassical isoster of the carbonyl group, due to its high polarity and great ability to function as an acceptor of hydrogen bond, oxetane seems to be an attractive and underexplored structural motif in medicinal chemistry.


Author(s):  
Jakob L. Andersen ◽  
Christoph Flamm ◽  
Daniel Merkle ◽  
Peter F. Stadler

2017 ◽  
Vol 29 (21) ◽  
pp. 9102-9109 ◽  
Author(s):  
Rohit Batra ◽  
Tran Doan Huan ◽  
George A. Rossetti ◽  
Rampi Ramprasad

Sign in / Sign up

Export Citation Format

Share Document