Design of Electroceramic Materials Using Artificial Neural Networks and Multiobjective Evolutionary Algorithms

2008 ◽  
Vol 48 (2) ◽  
pp. 262-273 ◽  
Author(s):  
D. J. Scott ◽  
S. Manos ◽  
P. V. Coveney
Author(s):  
Antonia Azzini ◽  
Andrea G.B. Tettamanzi

Artificial neural networks (ANNs) are computational models, loosely inspired by biological neural networks, consisting of interconnected groups of artificial neurons which process information using a connectionist approach. ANNs are widely applied to problems like pattern recognition, classification, and time series analysis. The success of an ANN application usually requires a high number of experiments. Moreover, several parameters of an ANN can affect the accuracy of solutions. A particular type of evolving system, namely neuro-genetic systems, have become a very important research topic in ANN design. They make up the so-called Evolutionary Artificial Neural Networks (EANNs), i.e., biologicallyinspired computational models that use evolutionary algorithms (EAs) in conjunction with ANNs. Evolutionary algorithms and state-of-the-art design of EANN were introduced first in the milestone survey by Xin Yao (1999), and, more recently, by Abraham (2004), by Cantu-Paz and Kamath (2005), and then by Castellani (2006). The aim of this article is to present the main evolutionary techniques used to optimize the ANN design, providing a description of the topics related to neural network design and corresponding issues, and then, some of the most recent developments of EANNs found in the literature. Finally a brief summary is given, with a few concluding remarks.


2013 ◽  
Vol 26 (8) ◽  
pp. 1781-1794 ◽  
Author(s):  
Alexandru-Ciprian Zăvoianu ◽  
Gerd Bramerdorfer ◽  
Edwin Lughofer ◽  
Siegfried Silber ◽  
Wolfgang Amrhein ◽  
...  

2005 ◽  
Vol 11 (1-2) ◽  
pp. 79-98 ◽  
Author(s):  
Inman Harvey ◽  
Ezequiel Di Paolo ◽  
Rachel Wood ◽  
Matt Quinn ◽  
Elio Tuci

We survey developments in artificial neural networks, in behavior-based robotics, and in evolutionary algorithms that set the stage for evolutionary robotics (ER) in the 1990s. We examine the motivations for using ER as a scientific tool for studying minimal models of cognition, with the advantage of being capable of generating integrated sensorimotor systems with minimal (or controllable) prejudices. These systems must act as a whole in close coupling with their environments, which is an essential aspect of real cognition that is often either bypassed or modeled poorly in other disciplines. We demonstrate with three example studies: homeostasis under visual inversion, the origins of learning, and the ontogenetic acquisition of entrainment.


Author(s):  
Amit Banerjee ◽  
Issam Abu-Mahfouz ◽  
AHM Esfakur Rahman

Abstract Model-based design of manufacturing processes have been gaining popularity since the advent of machine learning algorithms such as evolutionary algorithms and artificial neural networks (ANN). The problem of selecting the best machining parameters can be cast an optimization problem given a cost function and by utilizing an input-output connectionist framework using as ANNs. In this paper, we present a comparison of various evolutionary algorithms for parameter optimization of an end-milling operation based on a well-known cost function from literature. We propose a modification to the cost function for milling and include an additional objective of minimizing surface roughness and by using NSGA-II, a multi-objective optimization algorithm. We also present comparison of several population-based evolutionary search algorithms such as variants of particle swarm optimization, differential evolution and NSGA-II.


Sign in / Sign up

Export Citation Format

Share Document