Solubility of lead bromide in nitrate media. A study of ionic interactions

1972 ◽  
Vol 49 (4) ◽  
pp. 282
Author(s):  
J. N. Cooper
2020 ◽  
Author(s):  
Jakob Dahl ◽  
Xingzhi Wang ◽  
Xiao Huang ◽  
Emory Chan ◽  
Paul Alivisatos

<p>Advances in automation and data analytics can aid exploration of the complex chemistry of nanoparticles. Lead halide perovskite colloidal nanocrystals provide an interesting proving ground: there are reports of many different phases and transformations, which has made it hard to form a coherent conceptual framework for their controlled formation through traditional methods. In this work, we systematically explore the portion of Cs-Pb-Br synthesis space in which many optically distinguishable species are formed using high-throughput robotic synthesis to understand their formation reactions. We deploy an automated method that allows us to determine the relative amount of absorbance that can be attributed to each species in order to create maps of the synthetic space. These in turn facilitate improved understanding of the interplay between kinetic and thermodynamic factors that underlie which combination of species are likely to be prevalent under a given set of conditions. Based on these maps, we test potential transformation routes between perovskite nanocrystals of different shapes and phases. We find that shape is determined kinetically, but many reactions between different phases show equilibrium behavior. We demonstrate a dynamic equilibrium between complexes, monolayers and nanocrystals of lead bromide, with substantial impact on the reaction outcomes. This allows us to construct a chemical reaction network that qualitatively explains our results as well as previous reports and can serve as a guide for those seeking to prepare a particular composition and shape. </p>


2019 ◽  
Author(s):  
Michael Worku ◽  
Yu Tian ◽  
Chenkun Zhou ◽  
Haoran Lin ◽  
Maya Chaaban ◽  
...  

Metal halide perovskite nanocrystals (NCs) have emerged as a new generation light emitting materials with narrow emissions and high photoluminescence quantum efficiencies (PLQEs). Various types of perovskite NCs, e.g. platelets, wires, and cubes, have been discovered to exhibit tunable emissions across the whole visible spectral region. Despite remarkable advances in the field of metal halide perovskite NCs over the last few years, many nanostructures in inorganic NCs have yet been realized in metal halide perovskites and producing highly efficient blue emitting perovskite NCs remains challenging and of great interest. Here we report for the first time the discovery of highly efficient blue emitting cesium lead bromide perovskite (CsPbBr3) NCs with hollow structures. By facile solution processing of cesium lead bromide perovskite precursor solution containing additional ethylenediammonium bromide and sodium bromide, in-situ formation of hollow CsPbBr3 NCs with controlled particle and pore sizes is realized. Synthetic control of hollow nanostructures with quantum confinement effects results in color tuning of CsPbBr3 NCs from green to blue with high PLQEs of up to 81 %.<br><div><br></div>


Nanoscale ◽  
2021 ◽  
Author(s):  
Syed Akhil ◽  
V.G.Vasavi Dutt ◽  
Nimai Mishra

Recently lead halide perovskite nanocrystals (PNCs) have attracted intense interest as promising active materials for optoelectronic devices. However, their extensive applications are still hampered by poor stability in ambient conditions....


2021 ◽  
Vol 137 ◽  
pp. 111191
Author(s):  
Ji Lei ◽  
Lo-Yueh Chang ◽  
Zhaohui Dong ◽  
Lijia Liu
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document