Bromopropane as a Novel Bromine Precursor for the Completely Amine Free Colloidal Synthesis of Ultra-Stable and Highly Luminescent Green-Emitting Cesium Lead Bromide (CsPbBr3) Perovskite Nanocrystals

Nanoscale ◽  
2021 ◽  
Author(s):  
Syed Akhil ◽  
V.G.Vasavi Dutt ◽  
Nimai Mishra

Recently lead halide perovskite nanocrystals (PNCs) have attracted intense interest as promising active materials for optoelectronic devices. However, their extensive applications are still hampered by poor stability in ambient conditions....

2021 ◽  
Author(s):  
Theodore A. Cohen ◽  
Yunping Huang ◽  
Nico A. Bricker ◽  
Connor S. Juhl ◽  
Tyler J. Milstein ◽  
...  

Inorganic lead-halide perovskite nanocrystals (NCs) are an exciting class of luminescent materials with high defect tolerance and broad spectral tunability, but such NCs are vulnerable to degradation under ambient conditions. Here, we report a class of modular zwitterion-functionalized isopropyl methacrylate polymers designed to stabilize a wide variety of perovskite NCs of different compositions, while also enabling processing in green solvents. Specifically, we report polymers in which the zwitterion spacing is tuned to accommodate the different lattice parameters of CsPb(Cl<sub>1-<i>x</i></sub>Br<i><sub>x</sub></i>)<sub>3</sub> and CsPbI<sub>3</sub> NCs, and we report partially fluorinated polymers prepared to accommodate the needs of infrared-emitting NCs. We show that as-synthesized CsPbBr<sub>3</sub>, CsPbI<sub>3</sub>, and Yb<sup>3+</sup>:CsPbCl<sub>3</sub> NCs are easily transferred into these zwitterionic polymers <i>via</i> a simple ligand-exchange procedure. These NC/polymer composites were then cast into thin films that showed substantially improved photoluminescence (PL) and stability compared with more conventional NC/polymer films. Specifically, CsPbBr<sub>3</sub> and CsPbI<sub>3</sub> NCs in films of their appropriately designed polymers had PL quantum yields of ~90% and ~80%, respectively. PL quantum yields decreased under continuous illumination, but self-healed completely after dark storage. We also found that all the NC compositions studied here maintain their PL quantum yields in NC/polymer composite films even after 1 year of ambient storage. These encouraging results demonstrate the utility of such modular zwitterion-functionalized polymers for hosting specific perovskite NCs, potentially opening avenues for robust new photonic applications of this important class of NCs.


Nanoscale ◽  
2016 ◽  
Vol 8 (12) ◽  
pp. 6278-6283 ◽  
Author(s):  
Oleh Vybornyi ◽  
Sergii Yakunin ◽  
Maksym V. Kovalenko

A novel synthesis of colloidal CH3NH3PbX3, (X = Br or I) nanocrystals that does not involve the use of polar solvents is presented.


Author(s):  
Haiyang He ◽  
Shiliang Mei ◽  
Zhihao Chen ◽  
Siyu Liu ◽  
Zhuoqi Wen ◽  
...  

Cesium lead halide perovskite nanocrystals (NCs) have compelling photoelectric properties while their poor stability severely impedes their practical applications. Herein, we demonstrate novel CsPbBr3-CsPbBr3 homostructured NCs induced by thioacetamide-Oleyamine (TAA-OAm)...


2021 ◽  
Author(s):  
Theodore A. Cohen ◽  
Yunping Huang ◽  
Nico A. Bricker ◽  
Connor S. Juhl ◽  
Tyler J. Milstein ◽  
...  

Inorganic lead-halide perovskite nanocrystals (NCs) are an exciting class of luminescent materials with high defect tolerance and broad spectral tunability, but such NCs are vulnerable to degradation under ambient conditions. Here, we report a class of modular zwitterion-functionalized isopropyl methacrylate polymers designed to stabilize a wide variety of perovskite NCs of different compositions, while also enabling processing in green solvents. Specifically, we report polymers in which the zwitterion spacing is tuned to accommodate the different lattice parameters of CsPb(Cl<sub>1-<i>x</i></sub>Br<i><sub>x</sub></i>)<sub>3</sub> and CsPbI<sub>3</sub> NCs, and we report partially fluorinated polymers prepared to accommodate the needs of infrared-emitting NCs. We show that as-synthesized CsPbBr<sub>3</sub>, CsPbI<sub>3</sub>, and Yb<sup>3+</sup>:CsPbCl<sub>3</sub> NCs are easily transferred into these zwitterionic polymers <i>via</i> a simple ligand-exchange procedure. These NC/polymer composites were then cast into thin films that showed substantially improved photoluminescence (PL) and stability compared with more conventional NC/polymer films. Specifically, CsPbBr<sub>3</sub> and CsPbI<sub>3</sub> NCs in films of their appropriately designed polymers had PL quantum yields of ~90% and ~80%, respectively. PL quantum yields decreased under continuous illumination, but self-healed completely after dark storage. We also found that all the NC compositions studied here maintain their PL quantum yields in NC/polymer composite films even after 1 year of ambient storage. These encouraging results demonstrate the utility of such modular zwitterion-functionalized polymers for hosting specific perovskite NCs, potentially opening avenues for robust new photonic applications of this important class of NCs.


2019 ◽  
Author(s):  
Michael Worku ◽  
Yu Tian ◽  
Chenkun Zhou ◽  
Haoran Lin ◽  
Maya Chaaban ◽  
...  

Metal halide perovskite nanocrystals (NCs) have emerged as a new generation light emitting materials with narrow emissions and high photoluminescence quantum efficiencies (PLQEs). Various types of perovskite NCs, e.g. platelets, wires, and cubes, have been discovered to exhibit tunable emissions across the whole visible spectral region. Despite remarkable advances in the field of metal halide perovskite NCs over the last few years, many nanostructures in inorganic NCs have yet been realized in metal halide perovskites and producing highly efficient blue emitting perovskite NCs remains challenging and of great interest. Here we report for the first time the discovery of highly efficient blue emitting cesium lead bromide perovskite (CsPbBr3) NCs with hollow structures. By facile solution processing of cesium lead bromide perovskite precursor solution containing additional ethylenediammonium bromide and sodium bromide, in-situ formation of hollow CsPbBr3 NCs with controlled particle and pore sizes is realized. Synthetic control of hollow nanostructures with quantum confinement effects results in color tuning of CsPbBr3 NCs from green to blue with high PLQEs of up to 81 %.<br><div><br></div>


Nano Today ◽  
2021 ◽  
Vol 39 ◽  
pp. 101179
Author(s):  
Jiaojiao Wei ◽  
Wei Zheng ◽  
Ping Huang ◽  
Zhongliang Gong ◽  
Yan Liu ◽  
...  

Author(s):  
Oliviero Cannelli ◽  
Nicola Colonna ◽  
Michele Puppin ◽  
Thomas C. Rossi ◽  
Dominik Kinschel ◽  
...  

2021 ◽  
Vol 125 (10) ◽  
pp. 5859-5869
Author(s):  
Goutam Ghosh ◽  
Kritiman Marjit ◽  
Srijon Ghosh ◽  
Arnab Ghosh ◽  
Raihan Ahammed ◽  
...  

2021 ◽  
Author(s):  
Syed Akhil ◽  
V.G.Vasavi Dutt ◽  
Nimai Mishra

In recent years inorganic lead halide perovskite nanocrystals (PNCs) have been used in photocatalytic reactions. The surface chemistry of the PNCs can play an important role in the excited state...


Sign in / Sign up

Export Citation Format

Share Document