visible spectral region
Recently Published Documents


TOTAL DOCUMENTS

172
(FIVE YEARS 48)

H-INDEX

22
(FIVE YEARS 2)

Photochem ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 9-31
Author(s):  
Eli Misael Espinoza ◽  
John Anthony Clark ◽  
Mimi Karen Billones ◽  
Gustavo Thalmer de Medeiros Silva ◽  
Cassio Pacheco da Silva ◽  
...  

Natural dyes and pigments offer incomparable diversity of structures and functionalities, making them an excellent source of inspiration for the design and development of synthetic chromophores with a myriad of emerging properties. Formed during maturation of red wines, pyranoanthocyanins are electron-deficient cationic pyranoflavylium dyes with broad absorption in the visible spectral region and pronounced chemical and photostability. Herein, we survey the optical and electrochemical properties of synthetic pyranoflavylium dyes functionalized with different electron-donating and electron-withdrawing groups, which vary their reduction potentials over a range of about 400 mV. Despite their highly electron-deficient cores, the exploration of pyranoflavyliums as photosensitizers has been limited to the “classical” n-type dye-sensitized solar cells (DSSCs) where they act as electron donors. In light of their electrochemical and spectroscopic properties, however, these biomimetic synthetic dyes should prove to be immensely beneficial as chromophores in p-type DSSCs, where their ability to act as photooxidants, along with their pronounced photostability, can benefit key advances in solar-energy science and engineering.


2022 ◽  
Author(s):  
Weichao Yao ◽  
Jian Liu ◽  
Enhao Li ◽  
Zhen Zhang ◽  
Xiaodong Xu ◽  
...  

2021 ◽  
pp. 1-8
Author(s):  
Khue Nguyen ◽  
Pavle V. Radovanovic

Defects, both native and extrinsic, critically determine functional properties of metal oxides. Gallium oxide has recently gained significant attention for its promise in microelectronics, owing to the unique combination of conductivity and high breakdown voltage, and solid-state lighting, owing to the strong photoluminescence in the visible spectral region. These properties are associated with the presence of native defects that can form both donor and acceptor states in Ga2O3. Recently, Ga2O3 nanocrystal synthesis in solution and optical glasses has been developed, allowing for a range of new applications in photonics, lighting, and photocatalysis. This review focuses on the structure and properties of Ga2O3 nanocrystals with a particular emphasis on the electronic structure and interaction of defects in reduced dimensions and their role in the observed photoluminescence properties. In addition to native defects, the effect of selected external impurities, including lanthanide and aliovalent dopants, and alloying on the emission properties of Ga2O3 nanocrystals are also discussed.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1550
Author(s):  
Natalia A. Vasilyeva ◽  
Elena B. Rudneva ◽  
Vera L. Manomenova ◽  
Marina V. Koldaeva ◽  
Alexey E. Voloshin

K2NiXCo(1−X) (SO4)2·6H2O (KCNSH) mixed crystal is a promising material for solar blind optical filters, combining high transparency in the ultraviolet range with effective suppression of the visible spectral region. Increasing the mechanical strength of these crystals is important to enable them to be machined in the manufacture of optical elements. A comprehensive study of the inhomogeneities and crack resistance of KCNSH crystal as a function of the growth conditions was carried out. The influence of the radial and mosaic inhomogeneity, as well as other structural defects, on the crack resistance of the crystals was analyzed. To assess the crack resistance of crystals, the parameters ca (crack length), c/a (the ratio of crack length to the size of the indentation), and KC (fracture toughness) were used. The correctness of the obtained results was analyzed. The conditions for growing KCNSH crystals with the best crack resistance were determined on the basis of the results of the study. It is shown that growing the mixed crystals using the temperature difference technique with a peripheral solution supply into the shaper provides the best crystal quality.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1406
Author(s):  
Mengdan Du ◽  
Quanquan Sun ◽  
Wei Jiao ◽  
Lifeng Shen ◽  
Xiao Chen ◽  
...  

Designed micro-nano structures on the surface of aluminum alloy provide excellent light trapping properties that can be used extensively in thermal photovoltaics, sensors, etc. However, the fabrication of high-performance antireflective micro-nano structures on aluminum alloy is challenging because aluminum has shallow intrinsic losses and weak absorption. A two-step strategy is proposed for fabricating broadband antireflection structures by superimposing nanostructures onto microscale structures. By optimizing the processing parameters of femtosecond laser, the average reflectances of 2.6% within the visible spectral region (400–800 nm) and 5.14% within the Vis-NIR spectral region (400–2500 nm) are obtained.


2021 ◽  
Vol 13 (22) ◽  
pp. 4555
Author(s):  
Konstantina Nakoudi ◽  
Christoph Ritter ◽  
Iwona S. Stachlewska

Cirrus is the only cloud type capable of inducing daytime cooling or heating at the top of the atmosphere (TOA) and the sign of its radiative effect highly depends on its optical depth. However, the investigation of its geometrical and optical properties over the Arctic is limited. In this work the long-term properties of cirrus clouds are explored for the first time over an Arctic site (Ny-Ålesund, Svalbard) using lidar and radiosonde measurements from 2011 to 2020. The optical properties were quality assured, taking into account the effects of specular reflections and multiple-scattering. Cirrus clouds were generally associated with colder and calmer wind conditions compared to the 2011–2020 climatology. However, the dependence of cirrus properties on temperature and wind speed was not strong. Even though the seasonal cycle was not pronounced, the winter-time cirrus appeared under lower temperatures and stronger wind conditions. Moreover, in winter, geometrically- and optically-thicker cirrus were found and their ice particles tended to be more spherical. The majority of cirrus was associated with westerly flow and westerly cirrus tended to be geometrically-thicker. Overall, optically-thinner layers tended to comprise smaller and less spherical ice crystals, most likely due to reduced water vapor deposition on the particle surface. Compared to lower latitudes, the cirrus layers over Ny-Ålesund were more absorbing in the visible spectral region and they consisted of more spherical ice particles.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2320
Author(s):  
Gema Marcelo ◽  
María del Mar López-González ◽  
Milena Vega ◽  
Carlos Pecharromán

The polymerization of 3,4-dihydroxy-L-phenylalanine leads to a carboxylic acid-rich synthetic melanin-like material (poly-L-DOPA). Synthetic melanin most resembles natural eumelanin in chemical structure. However, its deposition on surfaces leading to colored surfaces by interference is not as easy to accomplish as in the case of the preparation of colored surfaces by dopamine hydrochloride polymerization. This study deals with the preparation of new colored surfaces made from poly-L-DOPA displaying vivid colors by interference. These surfaces were obtained by depositing thin films of poly-L-DOPA on a reflective silicon nitride substrate. A high ionic strength in the polymerization medium was essential to accomplish the coating. The effect of ionic strength on the resulting surfaces was studied via reflectance, Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). The refractive index was determined by ellipsometry, and was nearly constant to 1.8 when λ > 650 nm. In the visible spectral region, the imaginary part of the refractive index becomes relevant. The refractive index in the visible wavelength range (400–600 nm) was in the range 1.7–1.80.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 5106
Author(s):  
Taj Muhammad Khan ◽  
Shahab Ud-Din Khan ◽  
Muhammad Raffi ◽  
Riaz Khan

In this study, time-dependent, one-dimensional modeling of a surface dielectric barrier discharge (SDBD) device, driven by a sinusoidal voltage of amplitude 1–3 kV at 20 kHz, in argon is described. An SDBD device with two Cu-stripe electrodes, covered by the quartz dielectric and with the discharge gap of 20 × 10−3 m, was assumed, and the time-dependent, one-dimensional discharge parameters were simulated versus time across the plasma gap. The plasma device simulated in the given arrangement was constructed and used for biocompatible antibacterial/antimicrobial coating of plasmonic particle aerosol and compared with the coating strategy of the DBD plasma jet. Simulation results showed discharge consists of an electrical breakdown, occurring in each half-cycle of the AC voltage with an electron density of 1.4 × 1010 cm−3 and electric field strength of 4.5 × 105 Vm−1. With SDBD, the surface coating comprises spatially distributed particles of mean size 29 (11) nm, while with argon plasma jet, the nanoparticles are aggregated in clusters that are three times larger in size. Both coatings are crystalline and exhibit plasmonic features in the visible spectral region. It is expected that the particle aerosols are collected under the ionic wind, induced by the plasma electric fields, and it is assumed that this follows the dominant charging mechanisms of ions diffusion. The cold plasma strategy is appealing in a sense; it opens new venues at the nanoscale to deal with biomedical and surgical devices in a flexible processing environment.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Alexander Palatnik ◽  
Markas Sudzius ◽  
Stefan Meister ◽  
Karl Leo

Abstract Topological interface states are formed when two photonic crystals with overlapping band gaps are brought into contact. In this work, we show a planar binary structure with such an interface state in the visible spectral region. Furthermore, we incorporate a thin layer of an active organic material into the structure, providing gain under optical excitation. We observe a transition from fluorescence to lasing under sufficiently strong pump energy density. These results are the first realization of a planar topological laser, based on a topological interface state instead of a cavity like most of other laser devices. We show that the topological nature of the resonance leads to a so-called “topological protection”, i.e. stability against layer thickness variations as long as inversion symmetry is preserved: even for large changes in thickness of layers next to the interface, the resonant state remains relatively stable, enabling design flexibility superior to conventional planar microcavity devices.


Author(s):  
Maryam Nazari Haghighi Pashaki ◽  
Nina Mosimann-Schönbächler ◽  
Aaron Christopher Riede ◽  
Michela Gazzetto ◽  
Ariana Rondi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document