Low-cost programmed oven temperature controller

1982 ◽  
Vol 59 (4) ◽  
pp. 338 ◽  
Author(s):  
Gerald D. Clubine
2018 ◽  
Vol 14 (2) ◽  
pp. 213-218
Author(s):  
Chong Kim Soon ◽  
Nawoor Anusha Devi ◽  
Kok Beng Gan ◽  
Sue-Mian Then

A thermal cycler is used to amplify segments of DNA using the polymerase chain reaction (PCR). It is an instrument that requires precise temperature control and rapid temperature changes for certain experimental protocols. However, the commercial thermal cyclers are still bulky, expensive and limited for laboratory use only.  As such it is difficult for on-site molecular screening and diagnostics. In this work, a portable and low cost thermal cycler was designed and developed. The thermal cycler block was designed to fit six microcentrifuge tubes. A Proportional-Integral temperature controller was used to control the thermal cycler block temperature. The results showed that the maximum temperature ramp rate of the developed thermal cycler was 5.5 °C/s. The proportional gain (Kp) and integral gain (Ki) of the PI controller were 15 A/V and 1.8 A/Vs respectively. Finally, the developed thermal cycler successfully amplified six DNA samples at the expected molecular weight of 150 base pair. It has been validated using the Eppendorf Mastercycler nexus gradient system and gel electrophoresis analysis


Author(s):  
Brooks B. Lowrey ◽  
Christopher R. Brown ◽  
Daniel S. Park ◽  
Michael C. Murphy

A commercially manufactured thermostat (Model C Thermostat, Portage Electronic Products Inc., North Canton, OH) was employed as a precision MEMS temperature controller for a simulated continuous flow thermal reactor, with three temperature zones to mimic a polymerase chain reaction (CFPCR) device but different temperature set points to allow use of off-the-shelf controllers and thermally-responsive fluids. The ability of the commercial thermostats to maintain the temperatures within given tolerance bands in the thermal reactor was investigated. The factory supplied and calibrated thermostats were actuated by trimetallic strips, and supplied in a normally-closed configuration. Each thermostat was arranged in series with a 28 VDC power supply, a Kapton heater, and an aluminum thermal block to establish a constant temperature boundary condition for each temperature zone. Calibration temperatures for each thermostat reflected the three temperature set points of the simulated PCR device in the testing apparatus. Temperatures were collected by fixing Type K thermocouples in the fluidic channels of the simulated PCR device, and recording the temperature over time. The commercial, off-the-shelf, open-loop controllers successfully maintained ±1°C tolerance bands within each thermal zone. The ±1°C variation in the channel temperature was caused by the chatter due to the switching of the thermostat.


1981 ◽  
Vol 45 (2) ◽  
pp. 352-353
Author(s):  
Artner B Chace ◽  
Susan T Kohler

1987 ◽  
Vol 64 (4) ◽  
pp. 380
Author(s):  
H. R. Alzabet ◽  
J. A. Barbero

Sign in / Sign up

Export Citation Format

Share Document