Temperature-Programmed Oxidation of Coke Deposited by 1-Octene on Cracking Catalysts

1999 ◽  
Vol 13 (4) ◽  
pp. 888-894 ◽  
Author(s):  
Chao'en Li ◽  
Trevor C. Brown
1997 ◽  
Vol 11 (2) ◽  
pp. 463-469 ◽  
Author(s):  
Cam Le Minh ◽  
Rodney A. Jones ◽  
Ian E. Craven ◽  
Trevor C. Brown

2005 ◽  
Vol 17 (15) ◽  
pp. 3935-3943 ◽  
Author(s):  
A. Tschöpe ◽  
J. Markmann ◽  
P. Zimmer ◽  
R. Birringer ◽  
Chadwick

2002 ◽  
Vol 505 ◽  
pp. 58-70 ◽  
Author(s):  
D.T.P. Watson ◽  
J.J.W. Harris ◽  
D.A. King

2010 ◽  
Vol 3 (2) ◽  
pp. 118-125
Author(s):  
Hery Haerudin ◽  
Silvester Tursiloadi ◽  
Galuh Widiyarti ◽  
Wuryaningsih Sri Rahayu

Nickel catalyst has been prepared impregnation and precipitation with nickel content of 20% and 25% each using bentonite as support material. The effects of the preparation method were studied using temperature programmed oxidation (TPO) and temperature programmed reduction (TPR) and by determination of its specific surface area. The activity of catalysts has been tested in the hydrogenation of palm oil. The catalyst with 20% of nickel and prepared by impregnation shows a single peak at 301°C, compared to catalyst with 25% of nickel prepared by the same method which has a peak at 304°C and a shoulder at 330°C. The reduction curves of both catalysts, those are prepared by impregnation, show a homogeneity indicated by a high main peak at 426°C (20% Ni) and 430°C (25% Ni). The 25% nickel catalyst by impregnation has a shoulder at 508°C. The catalysts prepared by precipitation show peaks at 508°C and 661°C for 20% of Ni and peaks at 419°C and 511°C for 25% of Ni. The reduction curves of catalysts prepared by precipitation are significantly different from each other. Those are also very different comparing to the reduction curve of impregnated catalyst. The 20% precipitated nickel catalyst has a single peak at 540°C, but the 25% precipitated nickel catalyst shows peaks at 346°C and 503°C. The differences of peak position among the reduction curves of catalysts resulted in the differences of catalyst activities with the following order 20% Ni (impregnation) > 25% Ni (impregnation) > 20% Ni (precipitation) > 25% Ni (precipitation).   Keywords: bentonite, nickel catalyst, hidrogenation


Catalysts ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 584
Author(s):  
Kathleen Kirkwood ◽  
S. David Jackson

The hydrogenation and hydrodeoxygenation (HDO) of dihydroxybenzene isomers, catechol (1,2-dihydroxybenzene), resorcinol (1,3-dihydroxybenzene) and hydroquinone (1,4-dihydroxybenzene) was studied in the liquid phase over a Rh/silica catalyst at 303–343 K and 3 barg hydrogen pressure. The following order of reactivity, resorcinol > catechol > hydroquinone (meta > ortho > para) was obtained. Kinetic analysis revealed that catechol had a negative order of reaction whereas both hydroquinone and resorcinol gave positive half-order suggesting that catechol is more strongly adsorbed. Activation energies of ~30 kJ·mol−1 were determined for catechol and hydroquinone, while resorcinol gave a value of 41 kJ·mol−1. Resorcinol, and similarly hydroquinone, gave higher yields of the hydrogenolysis products (cyclohexanol, cyclohexanone and cyclohexane) with a cumulative yield of ~40%. In contrast catechol favoured hydrogenation, specifically to cis-1,2-dihydroxycyclohexane. It is proposed that cis-isomers are formed from hydrogenation of dihydroxycyclohexenes and high selectivity to cis-1,2-dihydroxycyclohexane can be explained by the enhanced stability of 1,2-dihydroxycyclohex-1-ene relative to other cyclohexene intermediates of catechol, resorcinol or hydroquinone. Trans-isomers are not formed by isomerisation of the equivalent cis-dihydroxycyclohexane but by direct hydrogenation of 2/3/4-hydroxycyclohexanone. The higher selectivity to HDO for resorcinol and hydroquinone may relate to the reactive surface cyclohexenes that have a C=C double bond β-γ to a hydroxyl group aiding hydrogenolysis. Using deuterium instead of hydrogen revealed that each isomer had a unique kinetic isotope effect and that HDO to cyclohexane was dramatically affected. The delay in the production of cyclohexane suggest that deuterium acted as an inhibitor and may have blocked the specific HDO site that results in cyclohexane formation. Carbon deposition was detected by temperature programmed oxidation (TPO) and revealed three surface species.


2020 ◽  
Vol 63 (15-18) ◽  
pp. 1446-1462 ◽  
Author(s):  
Kathryn L. MacIntosh ◽  
Simon K. Beaumont

AbstractFurfural is a key bioderived platform molecule, and its hydrogenation affords access to a number of important chemical intermediates that can act as “drop-in” replacements to those derived from crude oil or novel alternatives with desirable properties. Here, the vapour phase hydrogenation of furfural to furfuryl alcohol at 180 °C over standard impregnated nickel catalysts is reported and contrasted with the same reaction over copper chromite. Whilst the selectivity to furfuryl alcohol of the unmodified nickel catalysts is much lower than for copper chromite as expected, the activity of the nickel catalysts in the vapour phase is significantly higher, and the deactivation profile remarkably similar. In the case of the supported nickel catalysts, possible contribution to the deactivation by acidic sites on the catalyst support is discounted based on the similarity of deactivation kinetics on Ni/SiO2 with those seen for less acidic Ni/TiO2 and Ni/CeO2. Powder X-ray diffraction is used to exclude sintering as a primary deactivation pathway. Significant coking of the catalyst (~ 30 wt% over 16 h) is observed using temperature programmed oxidation. This, in combination with the solvent extraction analysis and infrared spectroscopy of the coked catalysts points to deactivation by polymeric condensation products of (reactant or) products and hydrocarbon like coke. These findings pave the way for targeted modification of nickel catalysts to use for this important biofeedstock-to-chemicals transformation.


Sign in / Sign up

Export Citation Format

Share Document